Please hand in answers no later than Tuesday 19 October.
(Question 1) Consider the linear two-dimensional system

$$
\left.\begin{array}{l}
x_{n+1}=-x_{n}+3 y_{n} \tag{*}\\
y_{n+1}=-\frac{3}{2} x_{n}+\frac{7}{2} y_{n}
\end{array}\right\}
$$

where $x_{n}, y_{n} \in \mathbb{R}$.
(a) Show that there is a saddle-point at the origin.
(b) Find the equations of the stable and unstable subspaces at the origin

Solution.
Put equations $\left({ }^{*}\right)$ in the form $\mathbf{x}_{n+1}=\mathbf{A} \mathbf{x}_{n}$ where $\mathbf{x}=[x, y]^{\prime}$ and $\mathbf{A}=$ $\left[\begin{array}{ll}-1 & 3 \\ -3 / 2 & 7 / 2\end{array}\right]$. The characteristic polynomial of \mathbf{A} is $\lambda^{2}+5 \lambda / 2+1$, which roots $\lambda_{+}=1 / 2, \lambda_{-}=2$. This proves that $\mathbf{0}$ is a saddle fixed point.
The eigenspace $E^{ \pm}$is the set of \mathbf{x} that solve $\left(\mathbf{A}-\lambda_{ \pm} \mathbf{I}\right) \mathbf{x}=\mathbf{0}$. Thus

$$
\begin{aligned}
& E^{+}=\operatorname{ker}\left(\mathbf{A}-\lambda_{+}\right)=\operatorname{ker}\left[\begin{array}{ll}
-1-1 / 2 & 3 \\
-3 / 2 & 7 / 2-1 / 2
\end{array}\right]=\mathbb{R}\left[\begin{array}{l}
2 \\
1
\end{array}\right] \\
& \text { while } \\
& E^{-}=\operatorname{ker}\left(\mathbf{A}-\lambda_{-}\right)=\operatorname{ker}\left[\begin{array}{ll}
-1-2 & 3 \\
-3 / 2 & 7 / 2-2
\end{array}\right]=\mathbb{R}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

Of course, E^{+}is the stable subspace and E^{-}is the unstable subspace. For future reference, let $\mathbf{u}^{ \pm}$be the basis vector of $E^{ \pm}$specified above.
(Question 2) Consider the nonlinear two-dimensional system

$$
\left.\begin{array}{l}
x_{n+1}=-x_{n}+3 y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3} \tag{**}\\
y_{n+1}=-\frac{3}{2} x_{n}+\frac{7}{2} y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3}
\end{array}\right\},
$$

where $x_{n}, y_{n} \in \mathbb{R}$.
(a) Show that there is a saddle-point at the origin.

Solution.
Put the equations $\left({ }^{* *}\right)$ in the form $\mathbf{x}_{n+1}=\mathbf{F}\left(\mathbf{x}_{n}\right)=\mathbf{B} \mathbf{x}_{n}+\mathbf{G}\left(\mathbf{x}_{n}\right)$ where $\mathbf{x}=[x, y]^{\prime}, \mathbf{B}$ equals the matrix \mathbf{A} from the previous question and \mathbf{G} is the nonlinear part. Then we see that $\mathbf{F}(\mathbf{0})=\mathbf{0}$ so $\mathbf{0}$ is a fixed-point, and $D \mathbf{F}_{\mathbf{0}}=\mathbf{A}$. The previous question shows that $\mathbf{0}$ is a saddle fixed point.
(b) Find the equations of the stable and unstable subspaces at the origin.

Solution.
See Question 1b.
(c) Introduce the vector $\binom{u_{n}^{+}}{u_{n}^{-}}$which is defined via

$$
\binom{x_{n}}{y_{n}}=\left(\begin{array}{cc}
a & 1 \\
1 & b
\end{array}\right)\binom{u_{n}^{+}}{u_{n}^{-}}
$$

where $\binom{a}{1}$ and $\binom{1}{b}$ are vectors aligned with the stable and unstable subspaces, respectively. Thereby, show that the nonlinear system may be expressed in the form

$$
\left.\begin{array}{l}
u_{n+1}^{+}=\alpha u_{n}^{+} \\
u_{n+1}^{-}=\beta u_{n}^{-}+\gamma\left(u_{n}^{+}\right)^{3}
\end{array}\right\}
$$

and evaluate the constants a, b, α, β and γ.
Solution.
Question 1b shows that $a=2$ and $b=1$. [Note that (\$\$) has diagonalized the linear part of \mathbf{F}, so α and β must be the eigenvalues of \mathbf{A}. We show this now.] Let $\mathbf{u}=\left[u^{+}, u^{-}\right]^{\prime}$ be the vector adapted to the splitting of \mathbb{R}^{2} into E^{+} and E^{-}. Write (\$) as $\mathbf{x}_{n}=\mathbf{P u}_{n}$. Then

$$
\mathbf{P} \mathbf{u}_{n+1}=\mathbf{x}_{n+1}=\mathbf{A} \mathbf{x}_{n}+\mathbf{G}\left(\mathbf{x}_{n}\right)=\mathbf{A P} \mathbf{u}_{n}+\mathbf{G}\left(\mathbf{P} \mathbf{u}_{n}\right)
$$

and so if we apply \mathbf{P}^{-1} to both sides of the equation

$$
\mathbf{u}_{n+1}=\mathbf{P}^{-1} \mathbf{A P} \mathbf{u}_{n}+\mathbf{P}^{-1} \mathbf{G}\left(\mathbf{P} \mathbf{u}_{n}\right)
$$

The matrix $\mathbf{P}^{-1} \mathbf{A P}=\left[\begin{array}{ll}1 / 2 & 0 \\ 0 & 2\end{array}\right]$. If both sides of $(\$)$ are multiplied on the left by the row vector $[1,-1]$, one gets $x_{n}-y_{n}=u_{n}^{+}$. Therefore

$$
\mathbf{G}\left(\mathbf{P u}_{n}\right)=\left[\begin{array}{l}
-15 / 8 \cdot\left(u_{n}^{+}\right)^{3} \\
-15 / 8 \cdot\left(u_{n}^{+}\right)^{3}
\end{array}\right]=-15 / 8 \cdot\left(u_{n}^{+}\right)^{3} \times\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Since the second column of \mathbf{P} is $[1,1]^{\prime}$, we see that $\mathbf{P e}_{2}=[1,1]^{\prime}$ or $[0,1]^{\prime}=$ $\mathbf{e}_{2}=\mathbf{P}^{-1}[1,1]^{\prime}$. Thus

$$
\mathbf{P}^{-1} \mathbf{G}\left(\mathbf{P} \mathbf{u}_{n}\right)=\left[\begin{array}{l}
0 \\
-15 / 8 \cdot\left(u_{n}^{+}\right)^{3}
\end{array}\right]
$$

Putting this all together we get

$$
\left.\begin{array}{l}
u_{n+1}^{+}=\frac{1}{2} u_{n}^{+} \\
u_{n+1}^{-}=2 u_{n}^{-}+\frac{-15}{8}\left(u_{n}^{+}\right)^{3}
\end{array}\right\}
$$

or $\alpha=1 / 2, \beta=2$ and $\gamma=-15 / 8$.
(d) Show that
i. the stable manifold is given exactly by

$$
u^{-}=\delta\left(u^{+}\right)^{3}
$$

ii. the unstable manifold is given exactly by

$$
u^{+}=\rho ;
$$

and evaluate the constants δ and ρ.
Solution.
The stable manifold W^{+}is locally the graph of a function $f: E^{+} \rightarrow E^{-}$ which vanishes to second order at 0 . Assume $u^{-}=f\left(u^{+}\right)=a\left(u^{+}\right)^{2}+b\left(u^{+}\right)^{3}$ exactly. Then

$$
u_{n+1}^{-}=f\left(u_{n+1}^{+}\right)=f\left(\frac{1}{2} u_{n}^{+}\right)=\frac{1}{4} a\left(u_{n}^{+}\right)^{2}+\frac{1}{8} b\left(u_{n}^{+}\right)^{3},
$$

while

$$
u_{n+1}^{-}=2 u_{n}^{-}-\frac{15}{8}\left(u_{n}^{+}\right)^{3}=2 a\left(u_{n}^{+}\right)^{2}+\left(2 b-\frac{15}{8}\right)\left(u_{n}^{+}\right)^{3} .
$$

Equating coefficients shows that $2 a=\frac{1}{2} a$ or $a=0$ and $2 b-\frac{1}{8} b=\frac{15}{8}$ or $b=1$. Thus

$$
W^{+}: \quad\left(u^{+}, u^{-}\right) \text {s.t. } u^{-}=\left(u^{+}\right)^{3} .
$$

The unstable manifold W^{-}is locally the graph of a function $g: E^{-} \rightarrow E^{+}$ which vanishes to second order at 0 . You are also given that $u^{+}=g\left(u^{-}\right)=$ constant. The only possibility is that $g\left(u^{-}\right)=\rho$ is identically zero. Therefore $W^{-}=E^{-}$or

$$
W^{-}: \quad\left(u^{+}, u^{-}\right) \text {s.t. } u^{+}=0
$$

(e) Sketch the stable and unstable manifolds in the $\left(u^{+}, u^{-}\right)$plane. Include in your sketch a few representative orbits and identify the stable and unstable subspaces.
Solution.
(f) Show that the nonlinear system reduces to a linear system by the variable change

$$
\begin{aligned}
& p_{n}=u_{n}^{+} \\
& q_{n}=\delta\left(u_{n}^{+}\right)^{3}-u_{n}^{-} .
\end{aligned}
$$

Solution.

We see from (\$\$) that $p_{n+1}=\frac{1}{2} p_{n}$. On the other hand

$$
q_{n+1}=\left(u_{n+1}^{+}\right)^{3}-u_{n+1}^{-}=\frac{1}{8}\left(u_{n}^{+}\right)^{3}-2 u_{n}^{-}+\frac{15}{8}\left(u_{n}^{+}\right)^{3}=2\left(\left(u_{n}^{+}\right)^{3}-u_{n}^{-}\right)=2 q_{n} .
$$

(Question 3) Let $I=[0,1]$ and let $T: I \rightarrow I$ be the tent map defined by

$$
T(x)= \begin{cases}2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\ -2(x-1) & \text { if } x \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Figure .0.1:

Prove that T has exactly 2^{n} periodic points of period n. Compute the number of prime periodic points of period n for $n=6$.

Solution.

Let us observe that T^{n} maps the interval $\left[k / 2^{n},(k+1) / 2^{n}\right]$ onto $[0,1]$ in a 1-1 fashion for each integer $k=0, \ldots, 2^{n}-1$. Indeed, on each such interval, T^{n} is an affine function that maps endpoints to endpoints, that is

$$
T^{n}(x)= \begin{cases}2^{n} x-k & \text { if } k \text { is even } \tag{0.1}\\ -2^{n} x+k+1 & \text { if } k \text { is odd }\end{cases}
$$

To prove this, note that for $n=1$ this claim is clear, so let's assume it to be true for some $n \geq 1$. For an interval $K=\left[k / 2^{n+1},(k+1) / 2^{n+1}\right]$ where $k<2^{n+1}$, write $k=2 l+m$ where $0 \leq l<2^{n}$ and $0 \leq m<2$; the interval K is one-half of the interval $L=\left[l / 2^{n},(l+1) / 2^{n}\right]$ (if $m=0$, it is the left half; if $m=1$, it is the right half).
Since $T^{n} L=[0,1]$, and K shares an endpoint with L, the induction hypothesis implies that $T^{n} K \subseteq[0,1 / 2]$ or $T^{n} K \subseteq[1 / 2,1]$. Let $x \in K$, so

$$
\begin{aligned}
& \text { If } T^{n} x \in[0,1 / 2], \\
& \qquad T\left(T^{n} x\right)= \begin{cases}2\left(2^{n} x-l\right)=2^{n+1} x-2 l \\
2\left(-2^{n} x+l+1\right)=-2^{n+1} x-2(l+1) & \text { if } l \text { is odd, }\end{cases} \\
& \text { If } T^{n} x \in[1 / 2,1], \\
& \qquad T\left(T^{n} x\right)= \begin{cases}-2\left(2^{n} x-l-1\right)=-2^{n+1} x-2(l+1) & \text { if } l \text { is even, } \\
-2\left(-2^{n} x+l+1-1\right)=2^{n+1} x-2 l & \text { if } l \text { is odd. }\end{cases}
\end{aligned}
$$

It is now a matter of working through the four cases and demonstrating that $m=0,1,1,0$ in the four cases. Indeed, in the first case, $T^{n+1} x$ is monotone
increasing on K, so the left end-point of $K, k / 2^{n+1}=l / 2^{n}+m / 2^{n+1}$ must be mapped to 0 . But since T^{n} maps the left end-point of $L, l / 2^{n}$, to 0 and 0 is fixed by T, we must have that the left end-points of K and L coincide, i.e. $m=0$ and so $k=2 l$. The other three cases are similar. Hence we have proven the claim.
Finally, since T^{n} is a monotone function on each of these dyadic intervals, and it maps each onto $[0,1]$, there is a unique point in the interior of each interval that is fixed by T^{n}. This proves there are 2^{n} in total.
We have (P_{n} is the number of period- n points, p_{n} is the number of prime period- n points)

$$
\begin{array}{ll}
P_{1}=p_{1}=2 & \\
P_{2}=4 & p_{2}=P_{2}-p_{1}=2 \\
P_{3}=8 & p_{3}=P_{3}-p_{1}=6 \\
P_{6}=64 & p_{6}=P_{6}-p_{1}-p_{2}-p_{3}=54 . \tag{0.2}
\end{array}
$$

