Dynamical Systems (MATH11027) Assignment 1 1

Please hand in answers no later than Tuesday 19 October.

(Question 1) Consider the linear two-dimensional system

Tpy1 = —Tp + 3yn
3 7 (*)7
Ynt+1 = 75-’”71 + 5%

where x,,y, € R.

(a) Show that there is a saddle-point at the origin.

(b) Find the equations of the stable and unstable subspaces at the origin.
Solution.
Put equations (*) in the form x,41 = Ax, where x = [z,y]' and A =

{ :;/2 3/2 } The characteristic polynomial of A is A2 + 5)/2 + 1, which
roots Ay = 1/2,A\_ = 2. This proves that 0 is a saddle fixed point.

The eigenspace E* is the set of x that solve (A — A:I)x = 0. Thus

E+:ker(AfA+):ker{’1’1/2 3 ]:R{Q},

. ~3/2 7/2—1/2 1
E*:kor(A—)\,):kol[:é/_QQ $/2_2} _R “}

Of course, £ is the stable subspace and E~ is the unstable subspace. For
future reference, let u™ be the basis vector of E* specified above.

(Question 2) Consider the nonlinear two-dimensional system

5

Tpy1 = —Tn + 3yn - g (.’I,’” - yn)3
()
S P 79(93 — )’
Yn+1 = 2 ‘n Qyn, ] n Yn
where z,,y, € R.
(a) Show that there is a saddle-point at the origin.
Solution.
Put the equations (**) in the form x,.; = F(x,) = Bx, + G(x,) where
x = [z,y]', B equals the matrix A from the previous question and G is

the nonlinear part. Then we see that F(0) = 0 so 0 is a fixed-point, and
DFy = A. The previous question shows that 0 is a saddle fixed point.
(b) Find the equations of the stable and unstable subspaces at the origin.

Solution.
See Question 1b.
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+
(¢) Introduce the vector ( Z” ) which is defined via

()= ) (). .

] 1 . .
where < (11 ) and p ) are vectors aligned with the stable and unstable

subspaces, respectively. Thereby, show that the nonlinear system may be
expressed in the form

ut, = aul,
o n iy )

and evaluate the constants a, b, a, 5 and 7.

Solution.

Question 1b shows that a = 2 and b = 1. [Note that ($$) has diagonalized

the linear part of F, so o and § must be the eigenvalues of A. We show this

now.] Let u = [u*,u~]" be the vector adapted to the splitting of R? into E*

and E~. Write ($) as x,, = Pu,. Then

Pu,;1 = x,11 = Ax, + G(x,) = APu,, + G(Pu,),
and so if we apply P! to both sides of the equation
U, = P'APu, + P7'G(Pu,).
1/2 0

0 2
left by the row vector [1, —1], one gets z,, — y,, = u;}. Therefore

The matrix P7'AP = { } If both sides of ($) are multiplied on the

cows - 485

Since the second column of P is [1,1]’, we see that Pe, = [1,1] or [0,1] =
ey = P7[1,1]". Thus

0
-1 o
P G(Pu,) = [ ~15/8 - (ut)? } .
Putting this all together we get
uerl = %u;rv .
Uy = 2u, + 22 (u)?

ora=1/2,8=2andy=-15/8.
(d) Show that

i. the stable manifold is given ezactly by
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ii. the unstable manifold is given ezactly by

ut = p;
and evaluate the constants 0 and p.
Solution.
The stable manifold W is locally the graph of a function f : E* — E~
which vanishes to second order at 0. Assume v~ = f(u*) = a(u*)? + b(u*)?
exactly. Then

_ 1 1 1 .
U = flub,) = f(iux) = —a(u)* + gb(uﬁ)“7

4
while 15 15
U = 20 — 2 () = 20(u)? + (2 — D) (i)
Equating coefficients shows that 2a = %a ora =0 and 2b— %b = % orb=1.
Thus
W (ut,u™) st u = (uh)®

The unstable manifold W~ is locally the graph of a function g : £~ — E*
which vanishes to second order at 0. You are also given that u™ = g(u™) =
constant. The only possibility is that g(u™) = p is identically zero. Therefore
W= =FE" or

W™ (whu™) st ut =

Sketch the stable and unstable manifolds in the (u*,u~) plane. Include in
your sketch a few representative orbits and identify the stable and unstable
subspaces.

Solution.

Show that the nonlinear system reduces to a linear system by the variable
change

Solution.
We see from ($$) that p,+1 = 3p,. On the other hand

D) = 2w - ) = 200

. _ 1 : _
Gn+1 = (U:L—Jrl)s T Upyr = g(u:)s - 2un + n n

(Question 3) Let I =[0,1] and let T': I — I be the tent map defined by

B 2 ifx € [07 %]
T(x) = {2@ —1) ifze ).
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<
Figure .0.1:

Prove that T has exactly 2" periodic points of period n. Compute the number of
prime periodic points of period n for n = 6.

Solution.

Let us observe that 7™ maps the interval [k/2", (k + 1)/2"] onto [0,1] in a 1-1
fashion for each integer k = 0,...,2" — 1. Indeed, on each such interval, 7™ is an
affine function that maps endpoints to endpoints, that is

() x —k if k is even, (0.1)
x) = .
—2"v+k+1 if kis odd.

To prove this, note that for n = 1 this claim is clear, so let’s assume it to be true
for some n > 1. For an interval K = [k/2"*! (k + 1)/2""] where k < 27", write
k =204+ m where 0 <[ < 2" and 0 < m < 2; the interval K is one-half of the
interval L = [1/2", (I 4+ 1)/2"] (if m = 0, it is the left half; if m = 1, it is the right
half).

Since T"L = [0,1], and K shares an endpoint with L, the induction hypothesis
implies that T"K C [0,1/2] or T"K C [1/2,1]. Let = € K, so

It 7"z € 0,1/2),
T(Trz) = {
It Tz € [1/2, 1],

T(T"x) = {

2(2n — 1) =2y — 21 if [ is even,
2(=2"x +1+1)=—-2""gx —2(I+1) iflisodd,

—2(2"p — 1 —1)= =2y —2(l+1) iflis even,
—2(=2"r 4+ 1+ 1—1)=2""y -2l  iflisodd.

It is now a matter of working through the four cases and demonstrating that
m = 0,1,1,0 in the four cases. Indeed, in the first case, 7'z is monotone



ot
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increasing on K, so the left end-point of K, k/2"*! = [/2" + m/2""! must be
mapped to 0. But since 7™ maps the left end-point of L, 1/2", to 0 and 0 is fixed
by T', we must have that the left end-points of K and L coincide, i.e. m = 0 and
80 k = 2[. The other three cases are similar. Hence we have proven the claim.

Finally, since 7™ is a monotone function on each of these dyadic intervals, and it
maps each onto [0, 1], there is a unique point in the interior of each interval that
is fixed by T™. This proves there are 2" in total.

We have (P, is the number of period-n points, p, is the number of prime period-n

points)
Pr=p =2
Py=4 pr=PFP—p =2
P;=38 p3=DP3—p1 =6

FPs =064 e = 6 —p1 —p2 — p3 = 54. (0.2)



