(1) For each $c \in \mathbb{R}$, define a map $\mathbf{f}_{c}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\mathbf{f}_{c}(x)=c \cdot \sin (x)
$$

As usual, we define a dynamical system by

$$
\begin{equation*}
x_{n+1}=\mathbf{f}_{c}\left(x_{n}\right) \tag{DS}
\end{equation*}
$$

for $n \geq 0$.
(a) Show that if x is a fixed point of (DS), then $-x$ is a fixed point, too.
(b) Show that $\mathbf{f}_{c}(\mathbb{R})=[-|c|,|c|]$. Deduce that if x is a periodic point of \mathbf{f}_{c}, then $x \in[-|c|,|c|]$.
(c) Show that if $|c|<1$, then for any orbit $\left\{x_{n}\right\}$ of (DS), x_{n} converges to 0 .
(d) Is 0 an unstable or stable fixed point for $c \in(-1,1)$?
(e) How many fixed points does \mathbf{f}_{c} have for $c \in(-1,1)$?
(f) Show that if $c>1$, then \mathbf{f}_{c} has at least 3 fixed points. To do this, solve for c as a function of the fixed point x and graph the resulting function.
(g) Let $c=\delta(x)$ be the function that you found in the previous question; it describes the parameter c as a function of the fixed point x. Let $\frac{\pi}{2}<\gamma<\pi$ be the smallest positive solution to the equation $x=-\tan (x)$. Determine if the 2 non-zero fixed points of \mathbf{f}_{c} are stable or unstable for $1<c<\delta(\gamma)$. [Remark: one can determine $\gamma \cong 2.0287578 \ldots$ and $\delta(\gamma) \cong 2.2618263 \ldots$]
(h) At $c=\delta(\gamma)$, the non-zero fixed points undergo a bifurcation. Describe this bifurcation.
/3
(2) Let $\Sigma=\mathbb{Z}_{2}^{\mathbb{N}}=\left\{\left(\omega_{0}, \omega_{1}, \ldots\right): \omega_{j} \in\{0,1\} \forall j \geq 0\right\}$.
(a) Define the shift map $\sigma: \Sigma \rightarrow \Sigma$.
(b) Let $\omega=\overline{0110}$ be an infinite periodic sequence. Compute $\sigma^{2}(\omega)$.
(c) Shows that σ has exactly 2^{n} periodic points of period n for each $n \geq 1$.
(d) Compute the number of prime period n points for σ when $n=3$ and 9 .
(e) Define a metric on Σ (you do not need to prove that what you have defined is a metric).
(f) Show that σ has a dense orbit.
(g) Define sensitive dependence on initial conditions.
(h) Does σ have sensitive dependence on initial conditions? Explain.
(3) (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Assume that f has a periodic point of prime period 3. Prove that, for all $k \geq 1, f$ has a periodic point of prime period k.
(b) Let $f_{\mu}(x)=x+x^{2}+\mu$.
(i) Find all fixed points of f_{μ} as a function of μ.
(ii) Describe the type of bifurcation that occurs at $\mu=0$, if one occurs.
(c) Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
g(z)=\left(\frac{3}{5}+i \frac{4}{5}\right) z+(2-3 i) z^{2} \bar{z}
$$

where $i=\sqrt{-1}$. Determine the stability of the fixed point $z=0$.
(4) Define a dynamical system on \mathbb{R}^{2} by

$$
\begin{align*}
& x_{n+1}=-\frac{16 y_{n}}{3}+x_{n}^{2}+\frac{17 x_{n}}{3} \\
& y_{n+1}=-\left(y_{n}+x_{n}\right)^{2}-\frac{7 y_{n}}{3}+\frac{8 x_{n}}{3} . \tag{DS}
\end{align*}
$$

(a) Show that the origin is a hyperbolic fixed point of $(D S)$.
(b) Let $\mathbf{v}_{+}=\left[\begin{array}{l}1 \\ *\end{array}\right]$ (resp. $\mathbf{v}_{-}=\left[\begin{array}{l}* \\ 1\end{array}\right]$) span the stable (resp. unstable) subspace of $(0,0)$. Find \mathbf{v}_{+}and \mathbf{v}_{-}.
(c) Introduce a system of coordinates $\left(u^{+}, u^{-}\right)$adapted to the stable and unstable subspaces. Express $(D S)$ in the form

$$
\begin{aligned}
& u_{n+1}^{+}=a u_{n}^{+}+p_{0}\left(u_{n}^{+}\right)^{2}+p_{1} u_{n}^{+} u_{n}^{-}+p_{2}\left(u_{n}^{-}\right)^{2} \\
& u_{n+1}^{-}=b u_{n}^{-}+q_{0}\left(u_{n}^{+}\right)^{2}+q_{1} u_{n}^{+} u_{n}^{-}+q_{2}\left(u_{n}^{-}\right)^{2}
\end{aligned}
$$

Determine the coefficients a, b, p_{i}, q_{j} for $i, j=0,1,2$.
(d) Find the Maclaurin series for $W_{l o c}^{+}$and $W_{l o c}^{-}$, up to second order, in the coordinates $\left(u^{+}, u^{-}\right)$.
(e) Sketch the stable and unstable subspaces and manifolds in the $\left(u^{+}, u^{-}\right)$ coordinates. Indicate how orbits beginning on the manifolds behave and how nearby orbits behave.

