U01875	May 2009 Dynamical Systems	MAT-4-DSy
(1) For	each $c \in \mathbb{R}$, define a map $\mathbf{f}_c : \mathbb{R} \to \mathbb{R}$ by	
	$\mathbf{f}_c(x) = c \cdot \sin(x).$	
Ası	usual, we define a dynamical system by	
	$x_{n+1} = \mathbf{f}_c(x_n)$	(DS)
for a	$n \ge 0.$	
(a)	Show that if x is a fixed point of (DS), then $-x$ is a fixed point	, too. /2
(b)	Show that $\mathbf{f}_c(\mathbb{R}) = [- c , c]$. Deduce that if x is a periodic po $x \in [- c , c]$.	int of \mathbf{f}_c , then $/3$
(c)	Show that if $ c < 1$, then for any orbit $\{x_n\}$ of (DS), x_n converge	ges to 0. /6
(d)	Is 0 an unstable or stable fixed point for $c \in (-1, 1)$?	/1
(e)	How many fixed points does \mathbf{f}_c have for $c \in (-1, 1)$?	/1
(f)	Show that if $c > 1$, then \mathbf{f}_c has at least 3 fixed points. To do the as a function of the fixed point x and graph the resulting function	is, solve for c on. $/5$
(g)	Let $c = \delta(x)$ be the function that you found in the previou describes the parameter c as a function of the fixed point x . Let the smallest positive solution to the equation $x = -\tan(x)$. De 2 non-zero fixed points of \mathbf{f}_c are stable or unstable for $1 < c < \delta$ one can determine $\gamma \cong 2.0287578$ and $\delta(\gamma) \cong 2.2618263$	s question; it $\frac{\pi}{2} < \gamma < \pi$ be termine if the (γ). [Remark: /4

(h) At $c=\delta(\gamma),$ the non-zero fixed points undergo a bifurcation. Describe this bifurcation. /3

1

U01875	Dynamical Systems	2
(2) Let (a	$\Sigma = \mathbb{Z}_2^{\mathbb{N}} = \{(\omega_0, \omega_1, \ldots) : \omega_j \in \{0, 1\} \ \forall j \ge 0\}.$) Define the <i>shift map</i> $\sigma : \Sigma \to \Sigma.$	/3
(b) Let $\omega = \overline{0110}$ be an infinite periodic sequence. Compute $\sigma^2(\omega)$.	/2
(c) Shows that σ has exactly 2^n periodic points of period n for each $n \ge 1$.	/5
(d) Compute the number of <i>prime</i> period n points for σ when $n = 3$ and 9.	/5
(e) Define a metric on Σ (you do not need to prove that what you have define a metric).	ed is /1
(f) Show that σ has a dense orbit.	/4
(g) Define sensitive dependence on initial conditions.	/2
(h) Does σ have sensitive dependence on initial conditions? Explain.	/3

U01875	Dynamical Systems	3
(3)	(a) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. Assume that f has a periodic p of prime period 3. Prove that, for all $k \ge 1$, f has a periodic point of pr period k .	oint [.] ime / 15
	 (b) Let f_μ(x) = x + x² + μ. (i) Find all fixed points of f_μ as a function of μ. 	/3
	(ii) Describe the type of bifurcation that occurs at $\mu = 0$, if one occurs.	/2
	(c) Let $g: \mathbb{C} \to \mathbb{C}$ be defined by	

$$g(z) = \left(\frac{3}{5} + i\frac{4}{5}\right)z + (2 - 3i)z^2\bar{z}$$

where $i = \sqrt{-1}$. Determine the stability of the fixed point $z = 0$.

here
$$i = \sqrt{-1}$$
. Determine the stability of the fixed point $z = 0$. /5

U01875	Dynamical Systems	4
(4) Define a dy	namical system on \mathbb{R}^2 by	
	$x_{n+1} = -\frac{16y_n}{3} + x_n^2 + \frac{17x_n}{3},$	(DS)
	$y_{n+1} = -(y_n + x_n)^2 - \frac{7y_n}{3} + \frac{8x_n}{3}.$	(23)
(a) Show t	hat the origin is a hyperbolic fixed point of (DS) .	/3
(b) Let \mathbf{v}_{+}	$=\begin{bmatrix}1*\end{bmatrix}$ (resp. $\mathbf{v}_{-}=\begin{bmatrix}*\\1\end{bmatrix}$) span the stable (resp. unstable	ble) subspace of
(0, 0).	Find \mathbf{v}_+ and \mathbf{v} .	/2
(c) Introd subspa	are a system of coordinates (u^+, u^-) adapted to the stab ces. Express (DS) in the form	le and unstable
	$u_{n+1}^{+} = au_{n}^{+} + p_{0}(u_{n}^{+})^{2} + p_{1}u_{n}^{+}u_{n}^{-} + p_{2}(u_{n}^{-})^{2}$	
	$u_{n+1}^{-} = bu_{n}^{-} + q_{0}(u_{n}^{+})^{2} + q_{1}u_{n}^{+}u_{n}^{-} + q_{2}(u_{n}^{-})^{2}$	

Determine the coefficients a, b, p_i, q_j for i, j = 0, 1, 2.

) Find the Maclaurin series for
$$W^+$$
 and W^- up to second order in the

- (d) Find the Maclaurin series for W_{loc}^+ and W_{loc}^- , up to second order, in the coordinates (u^+, u^-) . /10
- (e) Sketch the stable and unstable subspaces and manifolds in the (u^+, u^-) coordinates. Indicate how orbits beginning on the manifolds behave and how nearby orbits behave. /4

/6