U01875 May 2009 MAT-4-DSy
Dynamical Systems

(1) For each ¢ € R, define a map f.: R — R by
f.(x) = c-sin(x).

As usual, we define a dynamical system by

Tpy1 = fc(mn) (DS)

for n > 0.
(a) Show that if x is a fixed point of (DS), then —z is a fixed
point, too. /2
(b) Show that f.(R) = [—|c|,|c|]. Deduce that if x is a periodic
point of f., then = € [—|c|, ||]. /3

(c) Show that if |¢| < 1, then for any orbit {z,} of (DS), z,
converges to 0. /6

(d) Is 0 an unstable or stable fixed point for ¢ € (—1,1)7 /1
(e) How many fixed points does £, have for c € (—1,1)? /1

(f) Show that if ¢ > 1, then f. has at least 3 fixed points. To
do this, solve for ¢ as a function of the fixed point x and
graph the resulting function. /5

(g) Let ¢ = §(z) be the function that you found in the previous
question; it describes the parameter ¢ as a function of the

T
fixed point x. Let 5 < v < m be the smallest positive
solution to the equation z = — tan(z). Determine if the 2
non-zero fixed points of f. are stable or unstable for 1 <

¢ < 0(7y). [Remark: one can determine v = 2.0287578...
and 5(7) = 2.2618263 . ... | /4

(h) At ¢ = d(7), the non-zero fixed points undergo a bifurca-
tion. Describe this bifurcation. /3

Solution.



(a) Since f,. is odd: f.(z) =2 implies that —x = —f.(z) =
f.(—x) [2 marks].
(b) Since —1 < sin(z) < 1 for all z and sin(z) attains

these bounds, we have sin(R) = [—1,1], whence f.(R) =
[—|c|, |e]] [1 mark]. If x is a periodic point, then
there is an n > 0 such that x = f(x) = f.(y) where
y=1f""1(z). Thus, z € f.(R)=[—|c|,|c|] [2 marks].

(c) For |¢|] <1, we know that 27 € (—1,1). On the interval
(—1,1), we know that |sin(x)| < |z|, so |f.(z)| < |c||z| <
|z| [2 marks]. Therefore, |z1]| > |z2| >+, so |z,
is a decreasing sequence that is bounded below by
0, hence |x,| converges to some limit. Since the sign
of x, does not change, x, converges to a limit, call
it w [1 mark]. Then: w =lim, o 21 = £(lim, 0o zy,) =
f.(w), so w is a fixed point of f. in the interval
(=1,1)[1 mark]. If w#0, then we have

w

w=f(w) = |d= <1l = |w|<]|sin(w)|

sin(w)
Absurd, since w € (—1,1). Therefore w =0. [2 marks]

(d) It is stable from the previous answer.

(e) Exactly one.

(f) We saw above that if x is a fixed point of f., then

¢ = §(x) = @ if z #0,
1 if z = 0[2 marks].

The function & is even, has vertical asymptotes at

m/Z and it alternates in sign at each asymptote. Moreover,
the minimal value of |d| on [km, (k+1)7| is at least

|k|m, so the minimum of § is ¢=1 attained at z =

0 [2 marks]. It follows that for ¢ > 1, there are

at least 3 fixed points. Here is the graph on [—m, 7]

[1 mark]
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Let £ >0 be a fixed point of f. for ¢={d(x). Then

L« cos(x) = ’

fi(x) =

sin() tan(x)

(See figure 2.) For 0 <z <7/2, x <tan(zr). For
/2 < x < v, ¥ < —tan(z) and —tan(z) crosses x
at  =7. [2 marks]. Therefore, we see that |f/(z)]
is less than 1 for 0 <z <~ (for 0 < c < (7)) so
the f.p. x is stable in this interval, f/(z) equals
when —1 when z =+ (i.e. c¢=04(z)) and |f/(x)| exceeds
1 when z > 7 so the fixed point z is unstable in
this interval (i.e. c¢>4(y)). [2 marks].

The above description is of a flip bifurcation. |1
mark]

To determine the criticality, note that when x =

v, ¢=0()

£ £/ 2
D.f) =% ; (f_) < fr g,

Therefore, it is supercritical. [2 marks]
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(2) Let ¥ =Z5 = {(wo,wr,...) : w; €{0,1} Vj > 0}.

(a) Define the shift map o : ¥ — X. /3
(b) Let w = 0110 be an infinite periodic sequence. Compute
o (w). /2

(c) Shows that o has exactly 2" periodic points of period n for
each n > 1. /5

(d) Compute the number of prime period n points for o when
n=3and 9. /5

(e) Define a metric on ¥ (you do not need to prove that what

you have defined is a metric). /1
(f) Show that o has a dense orbit. /4
(g) Define sensitive dependence on initial conditions. /2

(h) Does o have sensitive dependence on initial conditions?
Explain. /3

Solution.
(a) For each w = (wg,wy,...) €2 [1 mark]|, we define

o(w)k = Wrt1 vk >0, [2 marks].

(b) We see that o%(w)y = wrio and so ¢2(0110) = 1001 [2

marks].

(c) Let s be a word in Z,; of length n. The infinite sequence
w=35-5--- (s concatenated with itself infinitely
many times) lies in Y, and 0"(w) = 's-+- = §--+ =

w, 80 w 1s a periodic point of period n. This proves
there are at least 2" periodic points of period n,
since there are 2" such words [3 marks].

On the other hand, o"((wo,wr,...)) = (Wn,Wni1,...) SO

w is a fixed point iff wy = wigy, for all k. Therefore,
the binary word s = wp,ws,...,wy—1 determines the
periodic point w = s-s---. This shows that there

are at most 2" period-n periodic points [2 marks].



(d)

Let P, be the number of period-n points and let p,
be the number of prime period-n points. We know that

o = P, — Z Dds P, =2" [3 marks].
dln,d<n
Thus
pp =2 p3=22—-21=6
po =2 —6—2 =504 [2 marks].
(e) Define, for all w,n € X [1 mark]

()

(g)

(h)

S |wn — 10|
d(w.n) =)  “og—
n=0

Let w € Y be constructed as follows: let s, be the
binary word obtained by concatenating all binary words
of the fixed length k for £ >1. Let w=S51-59--"

be the concatenation of all these words [2 marks]|.

We claim that the orbit of w is dense. Indeed, let

n € 2 and € > 0 be given. Let N be defined to

be [log,e ']+ 1. We want to show that there is an

n such that o"(w) € B.(n), or, from above, that ¢"(w) €
Cn+1(n). The binary word 7o, - ,Nn4+1 OCCUrS in Syio
and hence in w as some subsequence wy, - ,WpyN41 for
some n. This proves that the orbit is dense since

n and € >0 were arbitrary [2 marks].

We say that a map of a metric space f:(X,d) — (X,d)
has s.d.i.c. 1if there is an r > 0 such that for

all z € X and ¢ > 0, there is a k > 0 and y € X
such that [2 marks]

d(z,y) < e and d(f*z, fFy) > r.

Let d be defined as above and let r=1. Let w€
Y and € > 0 be given. Define N = [log,(e )] + 1.
We define 7 as follows:

TV 14w if i N,

where addition is mod 2 [2 marks|. It is easy to
see that d(w,n) < € and d(o™(w),o™(n)) = 1. This
proves s.d.i.c. [1 mark]
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(3) (a) Let f: R — R be a continuous function. Assume that f
has a periodic point of prime period 3. Prove that, for all
k > 1, f has a periodic point of prime period k. /15

(b) Let fu(z) =+ 2 + p.
(i) Find all fixed points of f, as a function of p. /3

(ii) Describe the type of bifurcation that occurs at u = 0,
if one occurs. /2

(c) Let g : C — C be defined by

g(z) = @ + %) 4 (2—30) 222

where ¢ = v/—1. Determine the stability of the fixed point
z=0. /5

Solution.

(a) This is textbook work (see chapter 4 of notes). To
prove this, we consider the mapping F' with period-3
orbit (a,b,c); i.e., we have F(a) =b,F(b) =c¢, F(c) =
a. We shall assume that a < b < ¢ (the case a <
c<b is treated similarly) [2 marks]. Let us define
Iy =a,b] and I; = [b,c¢|] [1 mark]. Four observations
are used in the proof [4 marks]:

(1) F(ly) 2 1.
(i1) F() 2 [hZU .
(iii) If [ is a closed interval and F(I) D I, then
F has a fixed point in I.
(iv) Suppose I, J are closed intervals. If F(I) D
J, then there exists a closed interval K C
I such that F(K)=J.
The last two observations are deduced from the intermediate
value theorem, since F' is continuous [1 mark]|. We
start the proof by noting that (3(a)ii) and (3(a)iii)
imply that F has a fixed point in /; [1 mark]. Also,
(3(a)i--3(a)iii) imply that F? has a fixed point in
Iy, so that F has a period-2 orbit [2 marks]. Thus,
the n =1 and n =2 cases are proven and henceforth
we assume n > 3. Now we construct a nested sequence
of closed intervals A,: let Ay = I, (3(a)ii) and
(3(a)iv) imply that there is a A; C Ay with F(A4;) =



Ap=1,. Similarly, there is a Ay C A; with F(Ay) =
A; and so F?(Ay) = Ay. Proceeding similarly, the
sequence

AgD A DA D DAy, with FH(A) =4y, k=12,...,n-2

(o)

(c)

can be constructed [2 marks]. The next interval
in the sequence, A, | is constructed by noting that
F" (A, 5) = F(Ag) D Iy (using (ii)). Then, (iv)
implies that there is a A, ; C A, o with F" Y4, ) =
Iy. Finally since F"(A, 1) = F(ly) D I (using (1)),
there exists a A, C A, with F"(4,) = Ay = [;.
Now, by construction A, C Ay, so that F"(4,) 2
A,. So (iii) then implies that there exists a fixed
point z* € A, with F™(z*) = z*. This is a prime
period-n point unless it is also fixed point of F*
for k <n. But this is impossible since z* € Ay, k=
0,1,---,n gives that F*(z*) €I, for k=1,2,...,n—
2 and we also have F" !(z*) € I,. (The case F" !(z*) €
IoN1I; = {b} can be excluded since it would imply
n=3.) This completes the proof. [2 marks]
(i) The fixed points of f, satisfy = =z+a?+yu,
i.e. x==y/—p for <0 [3 marks]|.
(ii) This is the standard example of a saddle-node
(or blue-sky) bifurcation [1 mark]. For u<
0, there are two fixed points and these collide
and disappear when =0 [1 mark].
We have that A = ¥ has unit modulus [1 mark].
Thus

l9(2)]> = (\z + c2*2) (A2 + ¢2°2)
=[2* + (A¢ + Ac)lz|* + ||
= |22 + 2Re(A0)|2|* + O(|2]%).
[3 marks]. For z sufficiently close to 0, the |z|*
term dominates the higher order terms. We compute

that
3+ 4
G = +5 X (2 + 30)
6+ 17i
5
so its real part is negative. This shows that [g(z)| <
|z| for all z# 0, close to 0, hence z=0 is stable
[1 mark].




|

(4) Define a dynamical system on R? by

8/3

16y, o 17z,
Tyl = ——5  TT, T —),

3 3
(DS)
(Yn + T2)° T + 8y
n = —Wntay) ——+—.
Yn+1 Yy 3 3

(a) Show that the origin is a hyperbolic fixed point of (DS).

/3

(b) Let v, = [1] (resp. v_ = [ﬂ) span the stable (resp.
unstable) subspace of (0,0). Find v and v_. /2

(¢c) Introduce a system of coordinates (u™,u ™) adapted to the
stable and unstable subspaces. Express (DS) in the form

Unyy = @ty +po(uy)” + prugu, +pa(u,)”

Uiy = buy + qo(ul)® + v, + ga(uy,)?

Determine the coefficients a, b, p;, ¢; for i,5 =0,1,2. /6

(d) Find the Maclaurin series for W," and W, _, up to second
order, in the coordinates (u™*,u™). /10

(e) Sketch the stable and unstable subspaces and manifolds in
the (u™, u™) coordinates. Indicate how orbits beginning on
the manifolds behave and how nearby orbits behave. /4

Solution.

(a) The linearization at [0,0] has the matrix

17/3 —16/3
{8//3 _7//3} [1 mark|

which has characteristic polynomial :1:2—%:1:+1 and
therefore its eigenvalues are 3,1/3 [2 marks].
(b) The stable eigenvector v, solves

16/3 —16/3 o n
—8/3} X Vv, = [0] — v, = L} [1 mark].
The unstable eigenvector is v_ = [2,1]T by a similar

computation [1 mark].
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(c) We have that

+ —
G —|uT+2u
Lj—u Vi tu V_—[UJF_HL

so,

-

=y
-+ 2y

] 1 mark]

[1 mark]

(DS) is transformed into

Uy 11 Tl = Ynt1
L‘LJ [ Tpg1 + 2yn+11 [1 mark]
17 n 7 n 8 n
A AN A R
- 6 [1 mark]
y" b4 ) Lo (g 4 an)? — Yn g B
_ 3%—3%“? +(xn+yn)
T 2/3 4 200/3 + 22 — 220 + yu)?
u, + (uy + 2u,)* + (2uf + 3u,)?
= /3 = G+ 20,2 - 20208 + 3u,)?
Thus,
b=3, Go=95 @¢=106, ¢ =13
a=1/3, po=-9, p1=—-28, py=—22, [2 marks].

(d) Assume that ut = g(

u”) =ag(u")? 4 -

is the local

unstable manifold expressed as the graph of a function

up to second order [1 mark].

all terms in u,

1 _

;;1—3: 9 )+ -
= (302~ 9)(u)* +
while,

Uy = a2ty )*

= 9ay(u;, ) + - -
We equate coefficients

33
a9 = ———

13
Thus,

Wige = {(=33(u

T)F/13,u)}

Then, if we ignore

of degree three or more,

using part (c)

using u = as(u; )? + -

using invariance
using part (c).

and deduce

[4 marks].

[1 mark].
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As above, assume that u~ = h(u") = by(u™)> +--- is
the local stable manifold expressed as the graph of
a function up to second order [1 mark]|. Then, if
we ignore all terms in u, of degree three or more,

Uy = 3u, +5(ut)? + using part (c)

= (3by 4+ 5)(u )2 + - - - using u, = by(ul)? + -+
while,

Uy = ba(uf )+ using invariance

- %bQ(u:{)Q 4. using part (c).

We equate coefficients and deduce

45

by = T [2 marks].
Thus,
Wi, = {(u*, —45(u*)2/26)} 1 mark].
(e)
ut
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FIGURE 4. The stable and unstable manifolds of (DS).
E* = y*-axis.

(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].
(iii) Correct arrows [1 mark].



