
U01875 May 2009 MAT-4-DSy

Dynamical Systems

(1) For each c ∈ R, define a map f c : R → R by

fc(x) = c · sin(x).
As usual, we define a dynamical system by

xn+1 = fc(xn) (DS)

for n ≥ 0.

(a) Show that if x is a fixed point of (DS), then −x is a fixed
point, too. /2

(b) Show that fc(R) = [−|c|, |c|]. Deduce that if x is a periodic
point of fc, then x ∈ [−|c|, |c|]. /3

(c) Show that if |c| < 1, then for any orbit {xn} of (DS), xn

converges to 0. /6

(d) Is 0 an unstable or stable fixed point for c ∈ (−1, 1)? /1

(e) How many fixed points does fc have for c ∈ (−1, 1)? /1

(f) Show that if c > 1, then fc has at least 3 fixed points. To
do this, solve for c as a function of the fixed point x and
graph the resulting function. /5

(g) Let c = δ(x) be the function that you found in the previous
question; it describes the parameter c as a function of the

fixed point x. Let
π

2
< γ < π be the smallest positive

solution to the equation x = − tan(x). Determine if the 2
non-zero fixed points of fc are stable or unstable for 1 <
c < δ(γ). [Remark: one can determine γ ∼= 2.0287578 . . .
and δ(γ) ∼= 2.2618263 . . .. ] /4

(h) At c = δ(γ), the non-zero fixed points undergo a bifurca-
tion. Describe this bifurcation. /3

Solution.

1



2

(a) Since fc is odd: fc(x) = x implies that −x = −fc(x) =
fc(−x) [2 marks].

(b) Since −1 ≤ sin(x) ≤ 1 for all x and sin(x) attains

these bounds, we have sin(R) = [−1, 1], whence fc(R) =
[−|c|, |c|] [1 mark]. If x is a periodic point, then

there is an n > 0 such that x = fnc (x) = fc(y) where

y = fn−1
c (x). Thus, x ∈ fc(R) = [−|c|, |c|] [2 marks].

(c) For |c| < 1, we know that x1 ∈ (−1, 1). On the interval

(−1, 1), we know that | sin(x)| < |x|, so |fc(x)| < |c||x| <
|x| [2 marks]. Therefore, |x1| > |x2| > · · · , so |xn|
is a decreasing sequence that is bounded below by

0, hence |xn| converges to some limit. Since the sign

of xn does not change, xn converges to a limit, call

it ω [1 mark]. Then: ω = limn→∞ xn+1 = fc(limn→∞ xn) =
fc(ω), so ω is a fixed point of fc in the interval

(−1, 1)[1 mark]. If ω 6= 0, then we have

ω = fc(ω) =⇒ |c| =
∣

∣

∣

∣

ω

sin(ω)

∣

∣

∣

∣

< 1 =⇒ |ω| < | sin(ω)|.

Absurd, since ω ∈ (−1, 1). Therefore ω = 0. [2 marks]
(d) It is stable from the previous answer.

(e) Exactly one.

(f) We saw above that if x is a fixed point of fc, then

c = δ(x) =

{

x
sin(x)

if x 6= 0,

1 if x = 0[2 marks].

The function δ is even, has vertical asymptotes at

πZ and it alternates in sign at each asymptote. Moreover,

the minimal value of |δ| on [kπ, (k+1)π] is at least

|k|π, so the minimum of δ is c = 1 attained at x =
0 [2 marks]. It follows that for c > 1, there are

at least 3 fixed points. Here is the graph on [−π, π]
[1 mark]
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(g) Let x > 0 be a fixed point of fc for c = δ(x). Then

f ′c(x) =
x

sin(x)
× cos(x) =

x

tan(x)
.

(See figure 2.) For 0 < x < π/2, x < tan(x). For

π/2 < x < γ, x < − tan(x) and − tan(x) crosses x
at x = γ. [2 marks]. Therefore, we see that |f ′c(x)|
is less than 1 for 0 < x < γ (for 0 < c < δ(γ)) so

the f.p. x is stable in this interval, f ′c(x) equals

when −1 when x = γ (i.e. c = δ(x)) and |f ′c(x)| exceeds

1 when x > γ so the fixed point x is unstable in

this interval (i.e. c > δ(γ)). [2 marks].
(h) The above description is of a flip bifurcation. [1

mark]
To determine the criticality, note that when x =
γ, c = δ(x)

Ds{fc} =
f ′′′c
f ′c

− 3

2

(

f ′′c
f ′c

)2

≤ −f ′′′c = f ′c = −1.

Therefore, it is supercritical. [2 marks]
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(2) Let Σ = Z
N

2 = {(ω0, ω1, . . .) : ωj ∈ {0, 1} ∀j ≥ 0}.

(a) Define the shift map σ : Σ → Σ. /3

(b) Let ω = 0110 be an infinite periodic sequence. Compute
σ2(ω). /2

(c) Shows that σ has exactly 2n periodic points of period n for
each n ≥ 1. /5

(d) Compute the number of prime period n points for σ when
n = 3 and 9. /5

(e) Define a metric on Σ (you do not need to prove that what
you have defined is a metric). /1

(f) Show that σ has a dense orbit. /4

(g) Define sensitive dependence on initial conditions. /2

(h) Does σ have sensitive dependence on initial conditions?
Explain. /3

Solution.

(a) For each ω = (ω0, ω1, . . .) ∈ Σ [1 mark], we define

σ(ω)k = ωk+1 ∀k ≥ 0, [2 marks].

(b) We see that σ2(ω)k = ωk+2 and so σ2(0110) = 1001 [2
marks].

(c) Let s be a word in Z2 of length n. The infinite sequence

ω = s ·s · · · (s concatenated with itself infinitely

many times) lies in Σ, and σn(ω) = ·s · · · = s · · · =
ω, so ω is a periodic point of period n. This proves

there are at least 2n periodic points of period n,
since there are 2n such words [3 marks].
On the other hand, σn((ω0, ω1, . . .)) = (ωn, ωn+1, . . .) so

ω is a fixed point iff ωk = ωk+n for all k. Therefore,

the binary word s = ω0, ω1, . . . , ωn−1 determines the

periodic point ω = s·s · · · . This shows that there

are at most 2n period-n periodic points [2 marks].
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(d) Let Pn be the number of period-n points and let pn
be the number of prime period-n points. We know that

pn = Pn −
∑

d|n,d<n

pd, Pn = 2n [3 marks].

Thus

p1 = 21 p3 = 23 − 21 = 6

p9 = 29 − 6− 2 = 504 [2 marks].

(e) Define, for all ω, η ∈ Σ [1 mark]

d(ω, η) =
∞
∑

n=0

|ωn − ηn|
2n+1

(f) Let ω ∈ Σ be constructed as follows: let sk be the

binary word obtained by concatenating all binary words

of the fixed length k for k ≥ 1. Let ω = s1·s2 · · ·
be the concatenation of all these words [2 marks].
We claim that the orbit of ω is dense. Indeed, let

η ∈ Σ and ǫ > 0 be given. Let N be defined to

be [log2 ǫ
−1] + 1. We want to show that there is an

n such that σn(ω) ∈ Bǫ(η), or, from above, that σn(ω) ∈
CN+1(η). The binary word η0, · · · , ηN+1 occurs in sN+2

and hence in ω as some subsequence ωn, · · · , ωn+N+1 for

some n. This proves that the orbit is dense since

η and ǫ > 0 were arbitrary [2 marks].
(g) We say that a map of a metric space f : (X, d) → (X, d)

has s.d.i.c. if there is an r > 0 such that for

all x ∈ X and ǫ > 0, there is a k > 0 and y ∈ X
such that [2 marks]

d(x, y) < ǫ and d(fkx, fky) ≥ r.

(h) Let d be defined as above and let r = 1. Let ω ∈
Σ and ǫ > 0 be given. Define N = [log2(ǫ

−1)] + 1.
We define η as follows:

ηi =

{

ωi if i ≤ N,

1 + ωi if i > N,

where addition is mod 2 [2 marks]. It is easy to

see that d(ω, η) < ǫ and d(σN(ω), σN(η)) = 1. This

proves s.d.i.c. [1 mark]
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(3) (a) Let f : R → R be a continuous function. Assume that f
has a periodic point of prime period 3. Prove that, for all
k ≥ 1, f has a periodic point of prime period k. /15

(b) Let fµ(x) = x+ x2 + µ.
(i) Find all fixed points of fµ as a function of µ. /3

(ii) Describe the type of bifurcation that occurs at µ = 0,
if one occurs. /2

(c) Let g : C → C be defined by

g(z) =

(

3

5
+ i

4

5

)

z + (2− 3i) z2z̄

where i =
√
−1. Determine the stability of the fixed point

z = 0. /5

Solution.

(a) This is textbook work (see chapter 4 of notes). To

prove this, we consider the mapping F with period-3

orbit (a, b, c); i.e., we have F (a) = b, F (b) = c, F (c) =
a. We shall assume that a < b < c (the case a <
c < b is treated similarly) [2 marks]. Let us define

I0 = [a, b] and I1 = [b, c] [1 mark]. Four observations

are used in the proof [4 marks]:
(i) F (I0) ⊇ I1.

(ii) F (I1) ⊇ I0 ∪ I1.
(iii) If I is a closed interval and F (I) ⊇ I, then

F has a fixed point in I.
(iv) Suppose I, J are closed intervals. If F (I) ⊇

J, then there exists a closed interval K ⊆
I such that F (K) = J.

The last two observations are deduced from the intermediate

value theorem, since F is continuous [1 mark]. We

start the proof by noting that (3(a)ii) and (3(a)iii)
imply that F has a fixed point in I1 [1 mark]. Also,

(3(a)i--3(a)iii) imply that F 2 has a fixed point in

I0, so that F has a period-2 orbit [2 marks]. Thus,

the n = 1 and n = 2 cases are proven and henceforth

we assume n > 3. Now we construct a nested sequence

of closed intervals An: let A0 = I1, (3(a)ii) and

(3(a)iv) imply that there is a A1 ⊆ A0 with F (A1) =
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A0 = I1. Similarly, there is a A2 ⊆ A1 with F (A2) =
A1 and so F 2(A2) = A0. Proceeding similarly, the

sequence

A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An−2, with F k(Ak) = A0, k = 1, 2, . . . , n−2,

can be constructed [2 marks]. The next interval

in the sequence, An−1 is constructed by noting that

F n−1(An−2) = F (A0) ⊇ I0 (using (ii)). Then, (iv)

implies that there is a An−1 ⊆ An−2 with F n−1(An−1) =
I0. Finally since F n(An−1) = F (I0) ⊇ I1 (using (i)),

there exists a An ⊆ An−1 with F n(An) = A0 = I1.
Now, by construction An ⊆ A0, so that F n(An) ⊇
An. So (iii) then implies that there exists a fixed

point x⋆ ∈ An with F n(x⋆) = x⋆. This is a prime

period-n point unless it is also fixed point of F k

for k < n. But this is impossible since x⋆ ∈ Ak, k =
0, 1, · · · , n gives that F k(x⋆) ∈ I1 for k = 1, 2, . . . , n−
2 and we also have F n−1(x⋆) ∈ I0. (The case F n−1(x⋆) ∈
I0 ∩ I1 = {b} can be excluded since it would imply

n = 3.) This completes the proof. [2 marks]
(b) (i) The fixed points of fµ satisfy x = x+x2+µ,

i.e. x = ±√−µ for µ ≤ 0 [3 marks].
(ii) This is the standard example of a saddle-node

(or blue-sky) bifurcation [1 mark]. For µ <
0, there are two fixed points and these collide

and disappear when µ = 0 [1 mark].
(c) We have that λ = 3+4i

5
has unit modulus [1 mark].

Thus

|g(z)|2 = (λz + cz2z̄)(λ̄z̄ + c̄z̄2z)

= |z|2 + (λc̄+ λ̄c)|z|4 + |c|2|z|6

= |z|2 + 2Re(λc̄)|z|4 +O(|z|6).
[3 marks]. For z sufficiently close to 0, the |z|4
term dominates the higher order terms. We compute

that

λc̄ =
3 + 4i

5
× (2 + 3i)

=
−6 + 17i

5
so its real part is negative. This shows that |g(z)| <
|z| for all z 6= 0, close to 0, hence z = 0 is stable

[1 mark].
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(4) Define a dynamical system on R
2 by

xn+1 = −16yn
3

+ x2
n +

17xn

3
,

yn+1 = − (yn + xn)
2 − 7yn

3
+

8xn

3
.

(DS)

(a) Show that the origin is a hyperbolic fixed point of (DS).
/3

(b) Let v+ =

[

1
∗

]

(resp. v− =

[

∗
1

]

) span the stable (resp.

unstable) subspace of (0, 0). Find v+ and v−. /2

(c) Introduce a system of coordinates (u+, u−) adapted to the
stable and unstable subspaces. Express (DS) in the form

u+
n+1 = au+

n + p0(u
+
n )

2 + p1u
+
nu

−
n + p2(u

−
n )

2

u−
n+1 = bu−

n + q0(u
+
n )

2 + q1u
+
nu

−
n + q2(u

−
n )

2

Determine the coefficients a, b, pi, qj for i, j = 0, 1, 2. /6

(d) Find the Maclaurin series for W+
loc and W−

loc, up to second
order, in the coordinates (u+, u−). /10

(e) Sketch the stable and unstable subspaces and manifolds in
the (u+, u−) coordinates. Indicate how orbits beginning on
the manifolds behave and how nearby orbits behave. /4

Solution.

(a) The linearization at [0, 0] has the matrix
[

17/3 −16/3
8/3 −7/3

]

[1 mark]

which has characteristic polynomial x2−10
3
x+1 and

therefore its eigenvalues are 3, 1/3 [2 marks].
(b) The stable eigenvector v+ solves

[

16/3 −16/3
8/3 −8/3

]

× v+ =

[

0
0

]

=⇒ v+ =

[

1
1

]

[1 mark].

The unstable eigenvector is v− = [2, 1]T by a similar

computation [1 mark].
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(c) We have that
[

x
y

]

= u+v+ + u−v− =

[

u+ + 2u−

u+ + u−

]

[1 mark]

so,
[

u−

u+

]

=

[

x− y
−x+ 2y

]

[1 mark]

(DS) is transformed into
[

u−
n+1

u+
n+1

]

=

[

xn+1 − yn+1

−xn+1 + 2yn+1

]

[1 mark]

=









−16yn
3

+ x2
n +

17xn

3
−
(

− (yn + xn)
2 − 7yn

3
+

8xn

3

)

−
(

−16yn
3

+ x2
n +

17xn

3

)

+ 2

(

− (yn + xn)
2 − 7yn

3
+

8xn

3

)









[1 mark]

=

[

3xn − 3yn + x2
n + (xn + yn)

2

xn/3 + 2yn/3 + x2
n − 2(xn + yn)

2

]

=

[

3u−
n + (u+

n + 2u−
n )

2 + (2u+
n + 3u−

n )
2

u+
n /3− (u+

n + 2u−
n )

2 − 2(2u+
n + 3u−

n )
2

]

.

Thus,

b = 3, q0 = 5, q1 = 16, q2 = 13
a = 1/3, p0 = −9, p1 = −28, p2 = −22,

[2 marks].

(d) Assume that u+ = g(u−) = a2(u
−)2 + · · · is the local

unstable manifold expressed as the graph of a function

up to second order [1 mark]. Then, if we ignore

all terms in u−
n of degree three or more,

u+
n+1 =

1

3
u+
n − 9(u−

n )
2 + · · · using part (c)

= (
1

3
a2 − 9)(u−

n )
2 + · · · using u+

n = a2(u
−
n )

2 + · · ·

while,

u+
n+1 = a2(u

−
n+1)

2 + · · · using invariance

= 9a2(u
−
n )

2 + · · · using part (c).

We equate coefficients and deduce

a2 = −33

13
[4 marks].

Thus,

W−
loc = {(−33(u−)2/13, u−)} [1 mark].
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As above, assume that u− = h(u+) = b2(u
+)2 + · · · is

the local stable manifold expressed as the graph of

a function up to second order [1 mark]. Then, if

we ignore all terms in u+
n of degree three or more,

u−
n+1 = 3u−

n + 5(u+
n )

2 + · · · using part (c)

= (3b2 + 5)(u+
n )

2 + · · · using u−
n = b2(u

+
n )

2 + · · ·
while,

u−
n+1 = b2(u

+
n+1)

2 + · · · using invariance

=
1

9
b2(u

+
n )

2 + · · · using part (c).

We equate coefficients and deduce

b2 = −45

26
[2 marks].

Thus,

W+
loc = {(u+,−45(u+)2/26)} [1 mark].

(e)

K0.04 K0.02 0 0.02 0.04

K0.02

K0.01

0.01

0.02

u−

u+

W−
locW+

loc

Figure 4. The stable and unstable manifolds of (DS).
E± = u±-axis.

(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].

(iii) Correct arrows [1 mark].


