U01875

May 2009
Dynamical Systems
(1) For each $c \in \mathbb{R}$, define a map $\mathbf{f}_{c}: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
\mathbf{f}_{c}(x)=c \cdot \sin (x) .
$$

As usual, we define a dynamical system by

$$
\begin{equation*}
x_{n+1}=\mathbf{f}_{c}\left(x_{n}\right) \tag{DS}
\end{equation*}
$$

for $n \geq 0$
(a) Show that if x is a fixed point of (DS), then $-x$ is a fixed point, too.
(b) Show that $\mathbf{f}_{c}(\mathbb{R})=[-|c|,|c|]$. Deduce that if x is a periodic point of \mathbf{f}_{c}, then $x \in[-|c|,|c|]$.
(c) Show that if $|c|<1$, then for any orbit $\left\{x_{n}\right\}$ of (DS), x_{n} converges to 0 .
(d) Is 0 an unstable or stable fixed point for $c \in(-1,1) ? \quad / \mathbf{1}$
(e) How many fixed points does \mathbf{f}_{c} have for $c \in(-1,1)$? $/ \mathbf{1}$
(f) Show that if $c>1$, then \mathbf{f}_{c} has at least 3 fixed points. To do this, solve for c as a function of the fixed point x and graph the resulting function.
(g) Let $c=\delta(x)$ be the function that you found in the previous question; it describes the parameter c as a function of the fixed point x. Let $\frac{\pi}{2}<\gamma<\pi$ be the smallest positive solution to the equation $x=-\tan (x)$. Determine if the 2 non-zero fixed points of \mathbf{f}_{c} are stable or unstable for $1<$ $c<\delta(\gamma)$. [Remark: one can determine $\gamma \cong 2.0287578 \ldots$ and $\delta(\gamma) \cong 2.2618263 \ldots$]
(h) At $c=\delta(\gamma)$, the non-zero fixed points undergo a bifurcation. Describe this bifurcation.

Solution.
(a) Since \mathbf{f}_{c} is odd: $\mathbf{f}_{c}(x)=x$ implies that $-x=-\mathbf{f}_{c}(x)=$ $\mathbf{f}_{c}(-x)$ [2 marks].
(b) Since $-1 \leq \sin (x) \leq 1$ for all x and $\sin (x)$ attains these bounds, we have $\sin (\mathbb{R})=[-1,1]$, whence $f_{c}(\mathbb{R})=$ $[-|c|,|c|][1$ mark]. If x is a periodic point, then there is an $n>0$ such that $x=\mathbf{f}_{c}^{n}(x)=\mathbf{f}_{c}(y)$ where $y=\mathbf{f}_{c}^{n-1}(x)$. Thus, $x \in \mathbf{f}_{c}(\mathbb{R})=[-|c|,|c|][2$ marks $]$.
(c) For $|c|<1$, we know that $x_{1} \in(-1,1)$. On the interval $(-1,1)$, we know that $|\sin (x)|<|x|$, so $\left|\mathbf{f}_{c}(x)\right|<|c||x|<$ $|x|$ [2 marks]. Therefore, $\left|x_{1}\right|>\left|x_{2}\right|>\cdots$, so $\left|x_{n}\right|$ is a decreasing sequence that is bounded below by 0 , hence $\left|x_{n}\right|$ converges to some limit. Since the sign of x_{n} does not change, x_{n} converges to a limit, call it ω [1 mark]. Then: $\omega=\lim _{n \rightarrow \infty} x_{n+1}=\mathbf{f}_{c}\left(\lim _{n \rightarrow \infty} x_{n}\right)=$ $\mathbf{f}_{c}(\omega)$, so ω is a fixed point of f_{c} in the interval $(-1,1)[1$ mark]. If $\omega \neq 0$, then we have
$\omega=\mathbf{f}_{c}(\omega) \quad \Longrightarrow \quad|c|=\left|\frac{\omega}{\sin (\omega)}\right|<1 \quad \Longrightarrow \quad|\omega|<|\sin (\omega)|$.
Absurd, since $\omega \in(-1,1)$. Therefore $\omega=0$. [2 marks]
(d) It is stable from the previous answer.
(e) Exactly one.
(f) We saw above that if x is a fixed point of f_{c}, then $c=\delta(x)= \begin{cases}\frac{x}{\sin (x)} & \text { if } x \neq 0, \\ 1 & \text { if } x=0[2 \text { marks }] .\end{cases}$
The function δ is even, has vertical asymptotes at $\pi \mathbb{Z}$ and it alternates in sign at each asymptote. Moreover, the minimal value of $|\delta|$ on $[k \pi,(k+1) \pi]$ is at least $|k| \pi$, so the minimum of δ is $c=1$ attained at $x=$ 0 [$\mathbf{2}$ marks]. It follows that for $c>1$, there are at least 3 fixed points. Here is the graph on $[-\pi, \pi]$ [1 mark]

Figure 1
(g) Let $x>0$ be a fixed point of \mathbf{f}_{c} for $c=\delta(x)$. Then

$$
\mathbf{f}_{c}^{\prime}(x)=\frac{x}{\sin (x)} \times \cos (x)=\frac{x}{\tan (x)} .
$$

(See figure 2.) For $0<x<\pi / 2, x<\tan (x)$. For $\pi / 2<x<\gamma, x<-\tan (x)$ and $-\tan (x)$ crosses x at $x=\gamma$. [2 marks]. Therefore, we see that $\left|\mathbf{f}_{c}^{\prime}(x)\right|$ is less than 1 for $0<x<\gamma$ (for $0<c<\delta(\gamma)$) so the f.p. $\quad x$ is stable in this interval, $\mathbf{f}_{c}^{\prime}(x)$ equals when -1 when $x=\gamma$ (i.e. $c=\delta(x)$) and $\left|\mathbf{f}_{c}^{\prime}(x)\right|$ exceeds 1 when $x>\gamma$ so the fixed point x is unstable in this interval (i.e. $c>\delta(\gamma)$). [2 marks].
(h) The above description is of a flip bifurcation. [1 mark]
To determine the criticality, note that when $x=$ $\gamma, c=\delta(x)$
$D_{s}\left\{\mathbf{f}_{c}\right\}=\frac{\mathbf{f}_{c}^{\prime \prime \prime}}{\mathbf{f}_{c}^{\prime}}-\frac{3}{2}\left(\frac{\mathbf{f}_{c}^{\prime \prime}}{\mathbf{f}_{c}^{\prime}}\right)^{2} \leq-\mathbf{f}_{c}^{\prime \prime \prime}=\mathbf{f}_{c}^{\prime}=-1$.
Therefore, it is supercritical. [2 marks]

Figure 2

Figure 3
(2) Let $\Sigma=\mathbb{Z}_{2}^{\mathbb{N}}=\left\{\left(\omega_{0}, \omega_{1}, \ldots\right): \omega_{j} \in\{0,1\} \forall j \geq 0\right\}$.
(a) Define the shift map $\sigma: \Sigma \rightarrow \Sigma$.
(b) Let $\omega=\overline{0110}$ be an infinite periodic sequence. Compute $\sigma^{2}(\omega)$.
/2
(c) Shows that σ has exactly 2^{n} periodic points of period n for each $n \geq 1$.
/5
(d) Compute the number of prime period n points for σ when $n=3$ and 9 .
$/ 5$
(e) Define a metric on Σ (you do not need to prove that what you have defined is a metric).
(f) Show that σ has a dense orbit.
(g) Define sensitive dependence on initial conditions.
(h) Does σ have sensitive dependence on initial conditions? Explain.

Solution.

(a) For each $\omega=\left(\omega_{0}, \omega_{1}, \ldots\right) \in \Sigma$ [1 mark], we define

$$
\sigma(\omega)_{k}=\omega_{k+1} \quad \forall k \geq 0, \quad[2 \text { marks }]
$$

(b) We see that $\sigma^{2}(\omega)_{k}=\omega_{k+2}$ and so $\sigma^{2}(\overline{0110})=\overline{1001}$ [2 marks].
(c) Let s be a word in \mathbb{Z}_{2} of length n. The infinite sequence $\omega=s \cdot s \cdots$ (s concatenated with itself infinitely many times) lies in Σ, and $\sigma^{n}(\omega)=s \cdots=s \cdots=$ ω, so ω is a periodic point of period n. This proves there are at least 2^{n} periodic points of period n, since there are 2^{n} such words [$\mathbf{3}$ marks].
On the other hand, $\sigma^{n}\left(\left(\omega_{0}, \omega_{1}, \ldots\right)\right)=\left(\omega_{n}, \omega_{n+1}, \ldots\right)$ so ω is a fixed point iff $\omega_{k}=\omega_{k+n}$ for all k. Therefore, the binary word $s=\omega_{0}, \omega_{1}, \ldots, \omega_{n-1}$ determines the periodic point $\omega=s \cdot s \cdots$. This shows that there are at most 2^{n} period-n periodic points [2 marks]
(d) Let P_{n} be the number of period-n points and let p_{n} be the number of prime period-n points. We know that

$$
p_{n}=P_{n}-\sum_{d \mid n, d<n} p_{d}, \quad P_{n}=2^{n} \quad[3 \text { marks }] .
$$

Thus
$p_{1}=2^{1} \quad p_{3}=2^{3}-2^{1}=6$
$p_{9}=2^{9}-6-2=504 \quad[2$ marks $]$.
(e) Define, for all $\omega, \eta \in \Sigma$ [1 mark]

$$
d(\omega, \eta)=\sum_{n=0}^{\infty} \frac{\left|\omega_{n}-\eta_{n}\right|}{2^{n+1}}
$$

(f) Let $\omega \in \Sigma$ be constructed as follows: let s_{k} be the binary word obtained by concatenating all binary words of the fixed length k for $k \geq 1$. Let $\omega=s_{1} \cdot s_{2}$. be the concatenation of all these words [2 marks]. We claim that the orbit of ω is dense. Indeed, let $\eta \in \Sigma$ and $\epsilon>0$ be given. Let N be defined to be $\left[\log _{2} \epsilon^{-1}\right]+1$. We want to show that there is an n such that $\sigma^{n}(\omega) \in B_{\epsilon}(\eta)$, or, from above, that $\sigma^{n}(\omega) \in$ $C_{N+1}(\eta)$. The binary word $\eta_{0}, \cdots, \eta_{N+1}$ occurs in s_{N+2} and hence in ω as some subsequence $\omega_{n}, \cdots, \omega_{n+N+1}$ for some n. This proves that the orbit is dense since η and $\epsilon>0$ were arbitrary [2 marks].
(g) We say that a map of a metric space $f:(X, d) \rightarrow(X, d)$ has s.d.i.c. if there is an $r>0$ such that for all $x \in X$ and $\epsilon>0$, there is a $k>0$ and $y \in X$ such that [2 marks]

$$
d(x, y)<\epsilon \text { and } d\left(f^{k} x, f^{k} y\right) \geq r
$$

(h) Let d be defined as above and let $r=1$. Let $\omega \in$ Σ and $\epsilon>0$ be given. Define $N=\left[\log _{2}\left(\epsilon^{-1}\right)\right]+1$. We define η as follows:

$$
\eta_{i}= \begin{cases}\omega_{i} & \text { if } i \leq N \\ 1+\omega_{i} & \text { if } i>N\end{cases}
$$

where addition is mod 2 [2 marks]. It is easy to see that $d(\omega, \eta)<\epsilon$ and $d\left(\sigma^{N}(\omega), \sigma^{N}(\eta)\right)=1$. This proves s.d.i.c. [1 mark]
(3) (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function. Assume that f has a periodic point of prime period 3. Prove that, for all $k \geq 1, f$ has a periodic point of prime period $k . \quad / \mathbf{1 5}$
(b) Let $f_{\mu}(x)=x+x^{2}+\mu$.
(i) Find all fixed points of f_{μ} as a function of μ. /3
(ii) Describe the type of bifurcation that occurs at $\mu=0$, if one occurs.
/2
(c) Let $g: \mathbb{C} \rightarrow \mathbb{C}$ be defined by

$$
g(z)=\left(\frac{3}{5}+i \frac{4}{5}\right) z+(2-3 i) z^{2} \bar{z}
$$

where $i=\sqrt{-1}$. Determine the stability of the fixed point $z=0$.

Solution.

(a) This is textbook work (see chapter 4 of notes). To prove this, we consider the mapping F with period-3 orbit (a, b, c); i.e., we have $F(a)=b, F(b)=c, F(c)=$
a. We shall assume that $a<b<c$ (the case $a<$ $c<b$ is treated similarly) [2 marks]. Let us define $I_{0}=[a, b]$ and $I_{1}=[b, c][\mathbf{1}$ mark $]$. Four observations are used in the proof [4 marks]:
(i) $F\left(I_{0}\right) \supseteq I_{1}$
(ii) $F\left(I_{1}\right) \supseteq I_{0} \cup I_{1}$.
(iii) If I is a closed interval and $F(I) \supseteq I$, then F has a fixed point in I.
(iv) Suppose I, J are closed intervals. If $F(I) \supseteq$
J, then there exists a closed interval $K \subseteq$ I such that $F(K)=J$.
The last two observations are deduced from the intermediate value theorem, since F is continuous [1 mark]. We start the proof by noting that (3(a)ii) and (3(a)iii) imply that F has a fixed point in $I_{1}[1 \mathrm{mark}]$. Also, (3(a)i--3(a)iii) imply that F^{2} has a fixed point in I_{0}, so that F has a period-2 orbit [2 marks]. Thus, the $n=1$ and $n=2$ cases are proven and henceforth we assume $n>3$. Now we construct a nested sequence of closed intervals A_{n} : let $A_{0}=I_{1},(3(a) i i)$ and (3(a)iv) imply that there is a $A_{1} \subseteq A_{0}$ with $F\left(A_{1}\right)=$
$A_{0}=I_{1} . \quad$ Similarly, there is a $A_{2} \subseteq A_{1}$ with $F\left(A_{2}\right)=$ A_{1} and so $F^{2}\left(A_{2}\right)=A_{0}$. Proceeding similarly, the sequence
$A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{n-2}, \quad$ with $\quad F^{k}\left(A_{k}\right)=A_{0}, \quad k=1,2, \ldots, n-2$, can be constructed [2 marks]. The next interval in the sequence, A_{n-1} is constructed by noting that $F^{n-1}\left(A_{n-2}\right)=F\left(A_{0}\right) \supseteq I_{0}$ (using (ii)). Then, (iv) implies that there is a $A_{n-1} \subseteq A_{n-2}$ with $F^{n-1}\left(A_{n-1}\right)=$ I_{0}. Finally since $F^{n}\left(A_{n-1}\right)=F\left(I_{0}\right) \supseteq I_{1}$ (using (i)), there exists a $A_{n} \subseteq A_{n-1}$ with $F^{n}\left(A_{n}\right)=A_{0}=I_{1}$. Now, by construction $A_{n} \subseteq A_{0}$, so that $F^{n}\left(A_{n}\right) \supseteq$ A_{n}. So (iii) then implies that there exists a fixed point $x^{\star} \in A_{n}$ with $F^{n}\left(x^{\star}\right)=x^{\star}$. This is a prime period- n point unless it is also fixed point of F^{k} for $k<n$. But this is impossible since $x^{\star} \in A_{k}, k=$ $0,1, \cdots, n$ gives that $F^{k}\left(x^{\star}\right) \in I_{1}$ for $k=1,2, \ldots, n-$ 2 and we also have $F^{n-1}\left(x^{\star}\right) \in I_{0}$. (The case $F^{n-1}\left(x^{\star}\right) \in$ $I_{0} \cap I_{1}=\{b\}$ can be excluded since it would imply $n=3$.) This completes the proof. [2 marks]
(b) (i) The fixed points of f_{μ} satisfy $x=x+x^{2}+\mu$, i.e. $\quad x= \pm \sqrt{-\mu}$ for $\mu \leq 0$ [3 marks].
(ii) This is the standard example of a saddle-node (or blue-sky) bifurcation [1 mark]. For $\mu<$ 0 , there are two fixed points and these collide and disappear when $\mu=0$ [$\mathbf{1}$ mark].
(c) We have that $\lambda=\frac{3+4 i}{5}$ has unit modulus [1 mark]. Thus

$$
\begin{aligned}
|g(z)|^{2} & =\left(\lambda z+c z^{2} \bar{z}\right)\left(\bar{\lambda} \bar{z}+\bar{c} \bar{z}^{2} z\right) \\
& =|z|^{2}+(\lambda \bar{c}+\bar{\lambda} c)|z|^{4}+|c|^{2}|z|^{6} \\
& =|z|^{2}+2 \operatorname{Re}(\lambda \bar{c})|z|^{4}+O\left(|z|^{6}\right)
\end{aligned}
$$

[3 marks]. For z sufficiently close to 0 , the $|z|^{4}$ term dominates the higher order terms. We compute that

$$
\begin{aligned}
\lambda \bar{c} & =\frac{3+4 i}{5} \times(2+3 i) \\
& =\frac{-6+17 i}{5}
\end{aligned}
$$

so its real part is negative. This shows that $|g(z)|<$ $|z|$ for all $z \neq 0$, close to 0 , hence $z=0$ is stable [1 mark].
(4) Define a dynamical system on \mathbb{R}^{2} by

$$
\begin{align*}
& x_{n+1}=-\frac{16 y_{n}}{3}+x_{n}^{2}+\frac{17 x_{n}}{3} \tag{DS}\\
& y_{n+1}=-\left(y_{n}+x_{n}\right)^{2}-\frac{7 y_{n}}{3}+\frac{8 x_{n}}{3}
\end{align*}
$$

(a) Show that the origin is a hyperbolic fixed point of $(D S)$.
/3
(b) Let $\mathbf{v}_{+}=\left[\begin{array}{c}1 \\ *\end{array}\right]$ (resp. $\left.\mathbf{v}_{-}=\left[\begin{array}{l}* \\ 1\end{array}\right]\right)$ span the stable (resp. unstable) subspace of $(0,0)$. Find \mathbf{v}_{+}and \mathbf{v}_{-}.
(c) Introduce a system of coordinates $\left(u^{+}, u^{-}\right)$adapted to the stable and unstable subspaces. Express $(D S)$ in the form

$$
\begin{aligned}
& u_{n+1}^{+}=a u_{n}^{+}+p_{0}\left(u_{n}^{+}\right)^{2}+p_{1} u_{n}^{+} u_{n}^{-}+p_{2}\left(u_{n}^{-}\right)^{2} \\
& u_{n+1}^{-}=b u_{n}^{-}+q_{0}\left(u_{n}^{+}\right)^{2}+q_{1} u_{n}^{+} u_{n}^{-}+q_{2}\left(u_{n}^{-}\right)^{2}
\end{aligned}
$$

Determine the coefficients a, b, p_{i}, q_{j} for $i, j=0,1,2$. /6
(d) Find the Maclaurin series for $W_{\text {loc }}^{+}$and $W_{\text {loc }}^{-}$, up to second order, in the coordinates $\left(u^{+}, u^{-}\right)$.
(e) Sketch the stable and unstable subspaces and manifolds in the $\left(u^{+}, u^{-}\right)$coordinates. Indicate how orbits beginning on the manifolds behave and how nearby orbits behave. /4

Solution.

(a) The linearization at $[0,0]$ has the matrix

$$
\left[\begin{array}{cc}
17 / 3 & -16 / 3 \\
8 / 3 & -7 / 3
\end{array}\right] \quad[\mathbf{1} \text { mark }]
$$

which has characteristic polynomial $x^{2}-\frac{10}{3} x+1$ and therefore its eigenvalues are $3,1 / 3$ [2 marks].
(b) The stable eigenvector \mathbf{v}_{+}solves
$\left[\begin{array}{cc}16 / 3 & -16 / 3 \\ 8 / 3 & -8 / 3\end{array}\right] \times \mathbf{v}_{+}=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad \Longrightarrow \quad \mathbf{v}_{+}=\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad[\mathbf{1} \mathbf{~ m a r k}]$. The unstable eigenvector is $\mathbf{v}_{-}=[2,1]^{T}$ by a similar computation [1 mark].
(c) We have that

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=u^{+} \mathbf{v}_{+}+u^{-} \mathbf{v}_{-}=\left[\begin{array}{c}
u^{+}+2 u^{-} \\
u^{+}+u^{-}
\end{array}\right] \quad[\mathbf{1} \text { mark }]
$$

so,

$$
\left[\begin{array}{l}
u^{-} \\
u^{+}
\end{array}\right]=\left[\begin{array}{c}
x-y \\
-x+2 y
\end{array}\right]
$$

[1 mark]
($D S$) is transformed into

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{n+1}^{-} \\
u_{n+1}^{+}
\end{array}\right] } & =\left[\begin{array}{c}
x_{n+1}-y_{n+1} \\
-x_{n+1}+2 y_{n+1}
\end{array}\right] \\
& =\left[\begin{array}{c}
-\frac{16 y_{n}}{3}+x_{n}^{2}+\frac{17 x_{n}}{3}-\left(-\left(y_{n}+x_{n}\right)^{2}-\frac{7 y_{n}}{3}+\frac{8 x_{n}}{3}\right) \\
-\left(-\frac{16 y_{n}}{3}+x_{n}^{2}+\frac{17 x_{n}}{3}\right)+2\left(-\left(y_{n}+x_{n}\right)^{2}-\frac{7 y_{n}}{3}+\frac{8 x_{n}}{3}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
3 x_{n}-3 y_{n}+x_{n}^{2}+\left(x_{n}+y_{n}\right)^{2} \\
x_{n} / 3+2 y_{n} / 3+x_{n}^{2}-2\left(x_{n}+y_{n}\right)^{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
3 u_{n}^{-}+\left(u_{n}^{+}+2 u_{n}^{-}\right)^{2}+\left(2 u_{n}^{+}+3 u_{n}^{-}\right)^{2} \\
u_{n}^{+} / 3-\left(u_{n}^{+}+2 u_{n}^{-}\right)^{2}-2\left(2 u_{n}^{+}+3 u_{n}^{-}\right)^{2}
\end{array}\right] .
\end{aligned}
$$

Thus,

$$
b=3, \quad q_{0}=5, \quad q_{1}=16, \quad q_{2}=13
$$

$$
\begin{array}{lll}
a=1 / 3, & p_{0}=-9, & p_{1}=-28, \\
p_{2}=-22,
\end{array}
$$

(d) Assume that $u^{+}=g\left(u^{-}\right)=a_{2}\left(u^{-}\right)^{2}+\cdots$ is the local unstable manifold expressed as the graph of a function up to second order [1 mark]. Then, if we ignore all terms in u_{n}^{-}of degree three or more,

$$
\begin{array}{rlr}
u_{n+1}^{+} & =\frac{1}{3} u_{n}^{+}-9\left(u_{n}^{-}\right)^{2}+\cdots & \quad \text { using part (c) } \\
& =\left(\frac{1}{3} a_{2}-9\right)\left(u_{n}^{-}\right)^{2}+\cdots \quad \text { using } u_{n}^{+}=a_{2}\left(u_{n}^{-}\right)^{2}+\cdots
\end{array}
$$

while,

$$
\begin{array}{rlr}
u_{n+1}^{+} & =a_{2}\left(u_{n+1}^{-}\right)^{2}+\cdots & \text { using invariance } \\
& =9 a_{2}\left(u_{n}^{-}\right)^{2}+\cdots & \text { using part }(\mathrm{c}) .
\end{array}
$$

We equate coefficients and deduce

$$
a_{2}=-\frac{33}{13}
$$

[4 marks].

Thus,
$W_{\text {loc }}^{-}=\left\{\left(-33\left(u^{-}\right)^{2} / 13, u^{-}\right)\right\}$
[1 mark].

As above, assume that $u^{-}=h\left(u^{+}\right)=b_{2}\left(u^{+}\right)^{2}+\cdots$ is the local stable manifold expressed as the graph of a function up to second order [$\mathbf{1}$ mark]. Then, if we ignore all terms in u_{n}^{+}of degree three or more,

$$
u_{n+1}^{-}=3 u_{n}^{-}+5\left(u_{n}^{+}\right)^{2}+\cdots \quad \text { using part (c) }
$$

$=\left(3 b_{2}+5\right)\left(u_{n}^{+}\right)^{2}+\cdots$

$$
\text { using } u_{n}^{-}=b_{2}\left(u_{n}^{+}\right)^{2}+\cdots
$$

while,

$$
\begin{aligned}
u_{n+1}^{-} & =b_{2}\left(u_{n+1}^{+}\right)^{2}+\cdots & \text { using invariance } \\
& =\frac{1}{9} b_{2}\left(u_{n}^{+}\right)^{2}+\cdots & \text { using part }(\mathrm{c}) .
\end{aligned}
$$

We equate coefficients and deduce
$b_{2}=-\frac{45}{26}$
[2 marks].
Thus,
$W_{\text {loc }}^{+}=\left\{\left(u^{+},-45\left(u^{+}\right)^{2} / 26\right)\right\}$
[1 mark].
(e)

Figure 4. The stable and unstable manifolds of (DS). $E^{ \pm}=u^{ \pm}$-axis.
(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].
(iii) Correct arrows [1 mark].

