U01875 May 2009 MAT-4-DSy Dynamical Systems  
(1) For each 
$$c \in \mathbb{R}$$
, define a map  $\mathbf{f}_c : \mathbb{R} \to \mathbb{R}$  by  $\mathbf{f}_c(x) = c \cdot \sin(x)$ .  
As usual, we define a dynamical system by  $x_{n+1} = \mathbf{f}_c(x_n)$  (DS)  
for  $n \ge 0$ .  
(a) Show that if  $x$  is a fixed point of (DS), then  $-x$  is a fixed point, too. /2  
(b) Show that  $\mathbf{f}_c(\mathbb{R}) = [-|c|, |c|]$ . Deduce that if  $x$  is a periodic point of  $\mathbf{f}_c$ , then  $x \in [-|c|, |c|]$ .  $/3$   
(c) Show that if  $|c| < 1$ , then for any orbit  $\{x_n\}$  of (DS),  $x_n$  converges to 0. /6  
(d) Is 0 an unstable or stable fixed point for  $c \in (-1, 1)$ ? /1  
(f) Show that if  $c > 1$ , then  $f_c$  have for  $c \in (-1, 1)$ ? /1  
(f) Show that if  $c > 1$ , then  $f_c$  has at least 3 fixed points. To do this, solve for  $c$  as a function of the fixed point  $x$  and graph the resulting function. /5  
(g) Let  $c = \delta(x)$  be the function that you found in the previous question; it describes the parameter  $c$  as a function of the fixed point  $x$ . Let  $\frac{\pi}{2} < \gamma < \pi$  be the smallest positive solution to the equation  $x = -\tan(x)$ . Determine if the 2 non-zero fixed points  $\mathbf{f}_c$  are stable or unstable for  $1 < c < \delta(\gamma)$ . [Remark: one can determine  $\gamma \cong 2.0287578...$  and  $\delta(\gamma) \cong 2.2618263...$ ]

/2

/3

 $x_n$ 

/6

/1

/1

То

/5

/4

(h) At  $c = \delta(\gamma)$ , the non-zero fixed points undergo a bifurcation. Describe this bifurcation. /3

## Solution.

2

- (a) Since  $\mathbf{f}_c$  is odd:  $\mathbf{f}_c(x) = x$  implies that  $-x = -\mathbf{f}_c(x) = x$  $\mathbf{f}_c(-x)$  [2 marks].
- (b) Since  $-1 < \sin(x) < 1$  for all x and  $\sin(x)$  attains these bounds, we have  $\sin(\mathbb{R}) = [-1, 1]$ , whence  $\mathbf{f}_c(\mathbb{R}) =$ [-|c|, |c|] [1 mark]. If x is a periodic point, then there is an n > 0 such that  $x = \mathbf{f}_c^n(x) = \mathbf{f}_c(y)$  where  $y = \mathbf{f}_{c}^{n-1}(x)$ . Thus,  $x \in \mathbf{f}_{c}(\mathbb{R}) = [-|c|, |c|]$  [2 marks].
- (c) For |c| < 1, we know that  $x_1 \in (-1, 1)$ . On the interval (-1,1), we know that  $|\sin(x)| < |x|$ , so  $|\mathbf{f}_{c}(x)| < |c||x| < |c||x|$ |x| [2 marks]. Therefore,  $|x_1| > |x_2| > \cdots$ , so  $|x_n|$ is a decreasing sequence that is bounded below by 0, hence  $|x_n|$  converges to some limit. Since the sign of  $x_n$  does not change,  $x_n$  converges to a limit, call it  $\omega$  [1 mark]. Then:  $\omega = \lim_{n \to \infty} x_{n+1} = \mathbf{f}_c(\lim_{n \to \infty} x_n) =$  $\mathbf{f}_c(\omega)$ , so  $\omega$  is a fixed point of  $\mathbf{f}_c$  in the interval (-1,1)[1 mark]. If  $\omega \neq 0$ , then we have

$$\omega = \mathbf{f}_c(\omega) \implies |c| = \left| \frac{\omega}{\sin(\omega)} \right| < 1 \implies |\omega| < |\sin(\omega)|.$$

Absurd, since  $\omega \in (-1,1)$ . Therefore  $\omega = 0$ . [2 marks] (d) It is stable from the previous answer.

(e) Exactly one.

(f) We saw above that if x is a fixed point of  $f_c$ , then

 $c = \delta(x) = \begin{cases} \frac{x}{\sin(x)} & \text{ if } x \neq 0, \\ 1 & \text{ if } x = 0[2 \text{ marks}]. \end{cases}$ 

The function  $\delta$  is even, has vertical asymptotes at  $\pi\mathbb{Z}$  and it alternates in sign at each asymptote. Moreover, the minimal value of  $|\delta|$  on  $[k\pi, (k+1)\pi]$  is at least  $|k|\pi$  , so the minimum of  $\delta$  is c=1 attained at x=0 [2 marks]. It follows that for c > 1, there are at least 3 fixed points. Here is the graph on  $[-\pi,\pi]$  $\begin{bmatrix} 1 & mark \end{bmatrix}$ 



3

Figure 1

(g) Let x>0 be a fixed point of  $\mathbf{f}_c$  for  $c=\delta(x)$ . Then

$$\mathbf{f}_c'(x) = \frac{x}{\sin(x)} \times \cos(x) = \frac{x}{\tan(x)}.$$

(See figure 2.) For  $0 < x < \pi/2$ ,  $x < \tan(x)$ . For  $\pi/2 < x < \gamma$ ,  $x < -\tan(x)$  and  $-\tan(x)$  crosses x at  $x = \gamma$ . [2 marks]. Therefore, we see that  $|\mathbf{f}'_c(x)|$  is less than 1 for  $0 < x < \gamma$  (for  $0 < c < \delta(\gamma)$ ) so the f.p. x is stable in this interval,  $\mathbf{f}'_c(x)$  equals when -1 when  $x = \gamma$  (i.e.  $c = \delta(x)$ ) and  $|\mathbf{f}'_c(x)|$  exceeds 1 when  $x > \gamma$  so the fixed point x is unstable in this interval (i.e.  $c > \delta(\gamma)$ ). [2 marks].

(h) The above description is of a flip bifurcation. [1 mark]

To determine the criticality, note that when  $x=\gamma,\ c=\delta(x)$ 

$$D_s\{\mathbf{f}_c\} = \frac{\mathbf{f}_c'''}{\mathbf{f}_c'} - \frac{3}{2} \left(\frac{\mathbf{f}_c''}{\mathbf{f}_c'}\right)^2 \le -\mathbf{f}_c''' = \mathbf{f}_c' = -1.$$

Therefore, it is supercritical. [2 marks]



4

Figure 3

/3

- (2) Let  $\Sigma = \mathbb{Z}_2^{\mathbb{N}} = \{(\omega_0, \omega_1, \ldots) : \omega_i \in \{0, 1\} \ \forall j > 0\}.$ (a) Define the shift map  $\sigma: \Sigma \to \Sigma$ .
  - (b) Let  $\omega = \overline{0110}$  be an infinite periodic sequence. Compute /2 $\sigma^2(\omega)$ .
  - (c) Shows that  $\sigma$  has exactly  $2^n$  periodic points of period n for each  $n \ge 1$ . /5
  - (d) Compute the number of *prime* period n points for  $\sigma$  when n = 3 and 9. /5
  - (e) Define a metric on  $\Sigma$  (you do not need to prove that what you have defined is a metric). /1
  - (f) Show that  $\sigma$  has a dense orbit. /4
  - (g) Define sensitive dependence on initial conditions. /2
  - (h) Does  $\sigma$  have sensitive dependence on initial conditions? Explain. /3

# Solution.

- (a) For each  $\omega = (\omega_0, \omega_1, \ldots) \in \Sigma$  [1 mark], we define
- $\sigma(\omega)_k = \omega_{k+1}$  $\forall k \geq 0,$ [2 marks].
- (b) We see that  $\sigma^2(\omega)_k = \omega_{k+2}$  and so  $\sigma^2(\overline{0110}) = \overline{1001}$  [2 marks].
- (c) Let s be a word in  $\mathbb{Z}_2$  of length n. The infinite sequence  $\omega = s \cdot s \cdots$  (s concatenated with itself infinitely many times) lies in  $\Sigma$ , and  $\sigma^n(\omega) = \cdot s \cdots = s \cdots =$  $\omega$ , so  $\omega$  is a periodic point of period n. This proves there are at least  $2^n$  periodic points of period n, since there are  $2^n$  such words [3 marks]. On the other hand,  $\sigma^n((\omega_0, \omega_1, \ldots)) = (\omega_n, \omega_{n+1}, \ldots)$  so  $\omega$  is a fixed point iff  $\omega_k = \omega_{k+n}$  for all k. Therefore, the binary word  $s = \omega_0, \omega_1, \ldots, \omega_{n-1}$  determines the periodic point  $\omega = s \cdot s \cdot \cdot \cdot$ . This shows that there are at most  $2^n$  period-*n* periodic points [2 marks].

(d) Let  $P_n$  be the number of period-*n* points and let  $p_n$ be the number of prime period-n points. We know that

$$p_n = P_n - \sum_{d|n,d < n} p_d, \qquad P_n = 2^n \qquad [\textbf{3 marks}].$$
 Thus 
$$p_1 = 2^1 \qquad \qquad p_3 = 2^3 - 2^1 = 6$$

 $p_9 = 2^9 - 6 - 2 = 504$ 

(e) Define, for all  $\omega, \eta \in \Sigma$  [1 mark]

$$d(\omega,\eta) = \sum_{n=0}^{\infty} \frac{|\omega_n - \eta_n|}{2^{n+1}}$$

- (f) Let  $\omega \in \Sigma$  be constructed as follows: let  $s_k$  be the binary word obtained by concatenating all binary words of the fixed length k for  $k \ge 1$ . Let  $\omega = s_1 \cdot s_2 \cdots$ be the concatenation of all these words [2 marks]. We claim that the orbit of  $\omega$  is dense. Indeed, let  $\eta \in \Sigma$  and  $\epsilon > 0$  be given. Let N be defined to be  $[\log_2 \epsilon^{-1}] + 1$ . We want to show that there is an n such that  $\sigma^n(\omega) \in B_{\epsilon}(\eta)$ , or, from above, that  $\sigma^n(\omega) \in$  $C_{N+1}(\eta)$ . The binary word  $\eta_0, \dots, \eta_{N+1}$  occurs in  $s_{N+2}$ and hence in  $\omega$  as some subsequence  $\omega_n, \dots, \omega_{n+N+1}$  for some n. This proves that the orbit is dense since  $\eta$  and  $\epsilon > 0$  were arbitrary [2 marks].
- (g) We say that a map of a metric space  $f: (X, d) \to (X, d)$ has s.d.i.c. if there is an r > 0 such that for all  $x \in X$  and  $\epsilon > 0$ , there is a k > 0 and  $y \in X$ such that [2 marks]

 $d(x, y) < \epsilon$  and  $d(f^k x, f^k y) > r$ .

(h) Let d be defined as above and let r = 1. Let  $\omega \in$  $\Sigma$  and  $\epsilon > 0$  be given. Define  $N = [\log_2(\epsilon^{-1})] + 1$ . We define  $\eta$  as follows:

$$\eta_i = \begin{cases} \omega_i & \text{ if } i \leq N, \\ 1 + \omega_i & \text{ if } i > N, \end{cases}$$

where addition is mod 2 [2 marks]. It is easy to see that  $d(\omega,\eta) < \epsilon$  and  $d(\sigma^N(\omega),\sigma^N(\eta)) = 1$ . This proves s.d.i.c. [1 mark]

6

- (3) (a) Let f: R → R be a continuous function. Assume that f has a periodic point of prime period 3. Prove that, for all k ≥ 1, f has a periodic point of prime period k. /15
  - (b) Let  $f_{\mu}(x) = x + x^2 + \mu$ . (i) Find all fixed points of  $f_{\mu}$  as a function of  $\mu$ . /3
    - (ii) Describe the type of bifurcation that occurs at  $\mu = 0$ , if one occurs. /2

7

(c) Let  $g: \mathbb{C} \to \mathbb{C}$  be defined by

$$g(z) = \left(\frac{3}{5} + i\frac{4}{5}\right) z + (2 - 3i) z^2 \bar{z}$$

where  $i = \sqrt{-1}$ . Determine the stability of the fixed point z = 0. /5

### Solution.

(a) This is textbook work (see chapter 4 of notes). To prove this, we consider the mapping F with period-3 orbit (a,b,c); i.e., we have F(a) = b, F(b) = c, F(c) = a. We shall assume that a < b < c (the case a < c < b is treated similarly) [2 marks]. Let us define  $I_0 = [a,b]$  and  $I_1 = [b,c]$  [1 mark]. Four observations are used in the proof [4 marks]:

(i) 
$$F(I_0) \supseteq I_1$$
.

- (ii)  $F(I_1) \supseteq I_0 \cup I_1$ .
- (iii) If I is a closed interval and  $F(I) \supseteq I$ , then F has a fixed point in I.
- (iv) Suppose I, J are closed intervals. If  $F(I) \supseteq J$ , then there exists a closed interval  $K \subseteq I$  such that F(K) = J.

The last two observations are deduced from the intermediate value theorem, since F is continuous [1 mark]. We start the proof by noting that (3(a)ii) and (3(a)iii) imply that F has a fixed point in  $I_1$  [1 mark]. Also, (3(a)i-3(a)iii) imply that  $F^2$  has a fixed point in  $I_0$ , so that F has a period-2 orbit [2 marks]. Thus, the n = 1 and n = 2 cases are proven and henceforth we assume n > 3. Now we construct a nested sequence of closed intervals  $A_n$ : let  $A_0 = I_1$ , (3(a)ii) and (3(a)iv) imply that there is a  $A_1 \subseteq A_0$  with  $F(A_1) =$ 

 $A_0=I_1.$  Similarly, there is a  $A_2\subseteq A_1$  with  $F(A_2)=A_1$  and so  $F^2(A_2)=A_0.$  Proceeding similarly, the sequence

 $A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots \supseteq A_{n-2}$ , with  $F^k(A_k) = A_0$ ,  $k = 1, 2, \dots, n-2$ ,

can be constructed [2 marks]. The next interval in the sequence,  $A_{n-1}$  is constructed by noting that  $F^{n-1}(A_{n-2}) = F(A_0) \supset I_0$  (using (ii)). Then, (iv) implies that there is a  $A_{n-1} \subseteq A_{n-2}$  with  $F^{n-1}(A_{n-1}) =$  $I_0$ . Finally since  $F^n(A_{n-1}) = F(I_0) \supseteq I_1$  (using (i)), there exists a  $A_n \subseteq A_{n-1}$  with  $F^n(A_n) = A_0 = I_1$ . Now, by construction  $A_n \subset A_0$ , so that  $F^n(A_n) \supset$  $A_n$ . So (iii) then implies that there exists a fixed point  $x^{\star} \in A_n$  with  $F^n(x^{\star}) = x^{\star}$ . This is a prime period-n point unless it is also fixed point of  $F^k$ for k < n. But this is impossible since  $x^* \in A_k$ , k = $0, 1, \cdots, n$  gives that  $F^k(x^{\star}) \in I_1$  for  $k = 1, 2, \dots, n-1$ 2 and we also have  $F^{n-1}(x^{\star}) \in I_0$ . (The case  $F^{n-1}(x^{\star}) \in I_0$ )  $I_0 \cap I_1 = \{b\}$  can be excluded since it would imply n=3.) This completes the proof. [2 marks] (b) (i) The fixed points of  $f_{\mu}$  satisfy  $x = x + x^2 + \mu$ , i.e.  $x = \pm \sqrt{-\mu}$  for  $\mu < 0$  [3 marks]. (ii) This is the standard example of a saddle-node

- (or blue-sky) bifurcation [1 mark]. For  $\mu < 0$ , there are two fixed points and these collide and disappear when  $\mu = 0$  [1 mark].
- (c) We have that  $\lambda = \frac{3+4i}{5}$  has unit modulus [1 ] mark]. Thus

$$\begin{split} g(z)|^2 &= (\lambda z + c z^2 \bar{z}) (\bar{\lambda} \bar{z} + \bar{c} \bar{z}^2 z) \\ &= |z|^2 + (\lambda \bar{c} + \bar{\lambda} c) |z|^4 + |c|^2 |z|^6 \\ &= |z|^2 + 2 \operatorname{Re}(\lambda \bar{c}) |z|^4 + O(|z|^6). \end{split}$$

 $[{\bf 3}\ {\rm marks}].$  For z sufficiently close to 0, the  $|z|^4$  term dominates the higher order terms. We compute that

$$\lambda \bar{c} = \frac{3+4i}{5} \times (2+3i)$$
$$= \frac{-6+17i}{5}$$

so its real part is negative. This shows that |g(z)| < |z| for all  $z \neq 0$ , close to 0, hence z = 0 is stable [1 mark].

8

(4) Define a dynamical system on  $\mathbb{R}^2$  by

$$\begin{aligned} x_{n+1} &= -\frac{16y_n}{3} + x_n^2 + \frac{17x_n}{3}, \\ y_{n+1} &= -(y_n + x_n)^2 - \frac{7y_n}{3} + \frac{8x_n}{3}. \end{aligned} \tag{DS}$$

9

- (a) Show that the origin is a hyperbolic fixed point of (DS). /3
- (b) Let  $\mathbf{v}_{+} = \begin{bmatrix} 1 \\ * \end{bmatrix}$  (resp.  $\mathbf{v}_{-} = \begin{bmatrix} * \\ 1 \end{bmatrix}$ ) span the stable (resp. unstable) subspace of (0,0). Find  $\mathbf{v}_{+}$  and  $\mathbf{v}_{-}$ . /2
- (c) Introduce a system of coordinates  $(u^+, u^-)$  adapted to the stable and unstable subspaces. Express (DS) in the form

$$\begin{split} u_{n+1}^+ &= a u_n^+ + p_0 (u_n^+)^2 + p_1 u_n^+ u_n^- + p_2 (u_n^-)^2 \\ u_{n+1}^- &= b u_n^- + q_0 (u_n^+)^2 + q_1 u_n^+ u_n^- + q_2 (u_n^-)^2 \end{split}$$

- Determine the coefficients  $a, b, p_i, q_j$  for i, j = 0, 1, 2. /6
- (d) Find the Maclaurin series for  $W_{loc}^+$  and  $W_{loc}^-$ , up to second order, in the coordinates  $(u^+, u^-)$ . /10
- (e) Sketch the stable and unstable subspaces and manifolds in the  $(u^+, u^-)$  coordinates. Indicate how orbits beginning on the manifolds behave and how nearby orbits behave. /4

#### Solution.

(a) The linearization at  $\left[0,0\right]$  has the matrix

$$\begin{bmatrix} 17/3 & -16/3 \\ 8/3 & -7/3 \end{bmatrix}$$
 [1 mark]

which has characteristic polynomial  $x^2 - \frac{10}{3}x + 1$  and therefore its eigenvalues are 3, 1/3 [2 marks]. (b) The stable eigenvector  $\mathbf{v}_+$  solves

$$\begin{bmatrix} 16/3 & -16/3 \\ 8/3 & -8/3 \end{bmatrix} \times \mathbf{v}_{+} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \Longrightarrow \qquad \mathbf{v}_{+} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad [\mathbf{1} \ \mathbf{mark}].$$

The unstable eigenvector is  $\mathbf{v}_{-} = [2,1]^T$  by a similar computation  $\begin{bmatrix} 1 & mark \end{bmatrix}$ .

10

(c) We have that  

$$\begin{bmatrix} x \\ y \end{bmatrix} = u^{+}\mathbf{v}_{+} + u^{-}\mathbf{v}_{-} = \begin{bmatrix} u^{+} + 2u^{-} \\ u^{+} + u^{-} \end{bmatrix}$$
[1 mark]  
so,  

$$\begin{bmatrix} u^{-} \\ u^{+} \end{bmatrix} = \begin{bmatrix} x - y \\ -x + 2y \end{bmatrix}$$
[1 mark]  
(DS) is transformed into  

$$\begin{bmatrix} u^{-} \\ u^{+} \\ u^{+} \\ n+1 \end{bmatrix} = \begin{bmatrix} x_{n+1} - y_{n+1} \\ -x_{n+1} + 2y_{n+1} \end{bmatrix}$$
[1 mark]  

$$= \begin{bmatrix} -\frac{16y_{n}}{3} + x_{n}^{2} + \frac{17x_{n}}{3} - \left( -(y_{n} + x_{n})^{2} - \frac{7y_{n}}{3} + \frac{8x_{n}}{3} \right) \\ - \left( -\frac{16y_{n}}{3} + x_{n}^{2} + \frac{17x_{n}}{3} \right) + 2 \left( -(y_{n} + x_{n})^{2} - \frac{7y_{n}}{3} + \frac{8x_{n}}{3} \right) \\ - \left( -\frac{16y_{n}}{3} + x_{n}^{2} + \frac{17x_{n}}{3} \right) + 2 \left( -(y_{n} + x_{n})^{2} - \frac{7y_{n}}{3} + \frac{8x_{n}}{3} \right) \end{bmatrix}$$
[1 mark]  

$$= \begin{bmatrix} 3x_{n} - 3y_{n} + x_{n}^{2} + \frac{17x_{n}}{3} + 2 \left( -(y_{n} + x_{n})^{2} - \frac{7y_{n}}{3} + \frac{8x_{n}}{3} \right) \\ - \left( -\frac{16y_{n}}{3} + x_{n}^{2} + \frac{2(x_{n} + y_{n})^{2}}{3} \right] \\ = \begin{bmatrix} 3u_{n}^{-} + (u_{n}^{+} + 2u_{n}^{-})^{2} + (2u_{n}^{+} + 3u_{n}^{-})^{2} \\ u_{n}^{-}/3 - (u_{n}^{+} + 2u_{n}^{-})^{2} - 2(2u_{n}^{+} + 3u_{n}^{-})^{2} \\ \end{bmatrix} .$$
Thus,  

$$b = 3, \quad q_{0} = 5, \quad q_{1} = 16, \quad q_{2} = 13 \\ a = 1/3, \quad p_{0} = -9, \quad p_{1} = -28, \quad p_{2} = -22, \\ (d) Assume that \quad u^{+} = g(u^{-}) = a_{2}(u^{-})^{2} + \cdots$$
 is the local unstable manifold expressed as the graph of a function up to second order [1 mark]. Then, if we ignore all terms in  $u_{n}^{-}$  of degree three or more,  

$$u_{n+1}^{+} = \frac{1}{2}u_{n}^{+} - 9(u_{n}^{-})^{2} + \cdots$$

while,

$$u_{n+1}^+ = a_2(u_{n+1}^-)^2 + \cdots$$
 using invariance  
=  $9a_2(u_n^-)^2 + \cdots$  using part (c).

# We equate coefficients and deduce

$$a_2 = -rac{33}{13}$$
 [4 marks]  
Thus,

$$W_{loc}^{-} = \{(-33(u^{-})^2/13, u^{-})\}$$
 [1 mark].

As above, assume that  $u^- = h(u^+) = b_2(u^+)^2 + \cdots$  is the local stable manifold expressed as the graph of a function up to second order [1 mark]. Then, if we ignore all terms in  $u_n^+$  of degree three or more,

$$\begin{split} u_{n+1}^- &= 3u_n^- + 5(u_n^+)^2 + \cdots & \text{using part (c)} \\ &= (3b_2 + 5)(u_n^+)^2 + \cdots & \text{using } u_n^- = b_2(u_n^+)^2 + \cdots \\ &\text{while,} \end{split}$$

 $u_{n+1}^- = b_2 (u_{n+1}^+)^2 + \cdots$  using invariance  $= \frac{1}{9} b_2 (u_n^+)^2 + \cdots$  using part (c).

We equate coefficients and deduce

FIGURE 4. The stable and unstable manifolds of (DS).  $E^{\pm} = u^{\pm}$ -axis.

- (i) Correct labels  $[2 \hspace{0.1 cm} \mathrm{marks}].$
- (ii) Correct orientation of manifolds [1 mark].
- (iii) Correct arrows [1 mark].