U01875 May 2009 MAT-4-DSy (a) Since f. is odd: f.(z) =z implies that —z = —f.(z) =
Dynamical Systems f.(—z) [2 marks].
(b) Since —1 < sin(z) < 1 for all z and sin(z) attains
these bounds, we have sin(R) = [—1,1], whence f.(R) =

[—lel,lel] [1 mark]. If x is a periodic point, then
there is an n > 0 such that z = f*(z) = f,(y) where
f.(x) = ¢-sin(x). y=1{£""1x). Thus, z € £.(R)=[—|c,|c]] [2 marks].
(c) For |¢| <1, we know that x; € (—1,1). On the interval
(=1,1), we know that |sin(z)| < |z|, so |f.(z)| <|c||lz] <
T = fo(2) (DS) |z| [2 marks]. Therefore, |zi|> |22 > -+, so |z,]
for n > 0. is a decreasing sequence that is bounded below by
n 0, hence |x,| converges to some limit. Since the sign
of z, does not change, x, converges to a limit, call
it w [1 mark]. Then: w =lim, oo Tpy1 = L(lim, oo z,) =
f.(w), so w is a fixed point of f. in the interval
(b) Show that f.(R) = [—]|c/, |¢|]. Deduce that if z is a periodic (=1,1)[1 mark]. If w#0, then we have
point of £, then = € [—|c], |¢[]. /3

(1) For each ¢ € R, define a map f. : R — R by

As usual, we define a dynamical system by

(a) Show that if z is a fixed point of (DS), then —z is a fixed
point, too. /2

w=f(v) = |= <l = |w|<

sin(w)].

sin(w)
(c) Show that if |¢| < 1, then for any orbit {x,} of (DS), z,

Absurd, since w € (—1,1). Therefore w =0. [2 marks]
converges to 0. /6 @

It is stable from the previous answer.
(e) Exactly one.

(d) Is 0 an unstable or stable fixed point for ¢ € (—-1,1)? /1 (f) We saw above that if z is a fixed point of f., then
e i A,
(e) How many fixed points does f. have for c € (-1,1)7 /1 c=06(z) = 1 if 2 =0[2 marks].

The function ¢ is even, has vertical asymptotes at
7Z and it alternates in sign at each asymptote. Moreover,
the minimal value of |§| on [km,(k+1)7] is at least

(f) Show that if ¢ > 1, then f, has at least 3 fixed points. To
do this, solve for ¢ as a function of the fixed point z and

graph the resulting function. /5 |k|w, so the minimum of 0 is ¢=1 attained at z =
0 [2 marks]. It follows that for ¢ > 1, there are
(g) Let ¢ = d(z) be the function that you found in the previous at least 3 fixed points. Here is the graph on [—m,7]
question; it describes the parameter ¢ as a function of the [1 mark]

fixed point . Let g < 7 < 7 be the smallest positive

solution to the equation # = — tan(z). Determine if the 2
non-zero fixed points of f. are stable or unstable for 1 <
¢ < 0(v). [Remark: one can determine v = 2.0287578...
and () = 2.2618263. . .. ] /4

(h) At ¢ = §(7), the non-zero fixed points undergo a bifurca-
tion. Describe this bifurcation. /3

Solution.
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(g) Let 2 >0 be a fixed point of f. for ¢=04(z). Then
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, x
fi(x) = Sn (D) x cos(z) = tan(z)’
(See figure 2.) For 0 <z <m/2, z < tan(z). For
/2 < & < v, * < —tan(z) and —tan(z) crosses z

at © =+. [2 marks]. Therefore, we see that [f/(x)]

is less than 1 for 0 <z <~ (for 0 < c < (7)) so

the f.p. 2z is stable in this interval, f/(z) equals

when —1 when v =7 (i.e. c¢=0(z)) and [f/(z)| exceeds -

1 when = > v so the fixed point z is unstable in

this interval (i.e. ¢>d(y)). [2 marks]. = =z I o T z B
(h) The above description is of a flip bifurcation. [l

mark]

To determine the criticality, note that when z =

v, ¢=4(x)
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Therefore, it is supercritical. [2 marks]



(2) Let ¥ =Z5 = {(wo,wr,...) = w; €{0,1} Vj > 0}.

(a) Define the shift map o : ¥ — X. /3
(b) Let w = 0110 be an infinite periodic sequence. Compute
o?(w). /2

(c) Shows that o has exactly 2" periodic points of period n for
each n > 1. /5

(d) Compute the number of prime period n points for o when
n=3and 9. /5

(e) Define a metric on ¥ (you do not need to prove that what

you have defined is a metric). /1
(f) Show that ¢ has a dense orbit. /4
(g) Define sensitive dependence on initial conditions. /2

(h) Does o have sensitive dependence on initial conditions?
Explain. /3

Solution.
(a) For each w = (wg,ws,...) €L [1 mark], we define
o(W)k = Wit vk >0, [2 marks].

(b) We see that o%(w), = wrye and so ¢2(0110) = 1001 [2

marks].

(c) Let s be a word in Z; of length n. The infinite sequence
w=s5-5--- (s concatenated with itself infinitely
many times) lies in ¥, and o™(w) = s+ = §-++ =

w, 80 w 1is a periodic point of period n. This proves

there are at least 2" periodic points of period n,
since there are 2" such words [3 marks].
On the other hand, o™((wo,wi,...)) = (Wn,wWni1,...) SO

w is a fixed point iff wy = wyy, for all k. Therefore,

the binary word s = wp,wi,...,wy_1 determines the
periodic point w = s-s---. This shows that there
are at most 2" period-n periodic points [2 marks].

(d)

Let P, be the number of period-n points and let p,
be the number of prime period-n points. We know that

o=y — Z Dds P,=2" [3 marks].
dln,d<n
Thus

p=2" ps=2°—2"=6
po=2"—6—2=>504 [2 marks].

(e) Define, for all w,n € X [1 mark]

d(w,n) = Z Lg;lnn‘
n=0

(£

(g)

()

Let w € X be constructed as follows: let s; be the
binary word obtained by concatenating all binary words
of the fixed length k for k>1. Let w=s1-59--"

be the concatenation of all these words [2 marks].

We claim that the orbit of w is dense. Indeed, let

n € ¥ and € > 0 be given. Let N be defined to

be [logye !]+1. We want to show that there is an

n such that o"(w) € B.(n), or, from above, that o"(w) €
Cn+1(n). The binary word no,-- ,7y41 occurs in Sy.io
and hence in w as some subsequence wy, - ,WprN4+1 fOT
some n. This proves that the orbit is dense since

n and € >0 were arbitrary [2 marks]|.

We say that a map of a metric space f:(X,d)— (X,d)
has s.d.i.c. if there is an r > (0 such that for

all z € X and € > 0, there is a k> 0 and y € X
such that [2 marks]

d(z,y) < e and d(ffz, fFy) >r.

Let d be defined as above and let r=1. Let w€
Y and € > 0 be given. Define N = [log,(e7!)] + 1.
We define 7 as follows:

_ w; ifi§N7
TV 1w it i> N,

where addition is mod 2 [2 marks]. It is easy to
see that d(w,n) < € and d(oc¥(w),o¥(n)) = 1. This
proves s.d.i.c. [1 mark]
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(3) (a) Let f: R — R be a continuous function. Assume that f Ap=1,. Similarly, there is a Ay C A; with F(4;) =
has a periodic point of prime period 3. Prove that, for all Ay and so F?(A;) = Ag. Proceeding similarly, the
k > 1, f has a periodic point of prime period k. /15 sequence
A DA DA DDA, with FMA) =4y, k=12...,n-2,

(b) Let fu(z) =z +2? + p.

can be constructed [2 marks|. The next interval
(i) Find all fixed points of f, as a function of . /3 [ ]

in the sequence, A, ; is constructed by noting that

F"1(A,_) = F(Ag) 2 Iy (using (ii)). Then, (iv)

(ii) Describe the type of bifurcation that occurs at u = 0, implies that there is a A, ; C A, o with F""'(4, )=
if one occurs. /2 Iy. Finally since F™(A,_1)=F(Ip) 2 I; (using (i)),

there exists a A, C A, with F"(4,) = Ay = ;.

Now, by construction A, C Ay, so that F"(A,) 2

(c) Let g : € — C be defined by A,. So (iii) then implies that there exists a fixed

3 4 point z* € A, with F"(z*) = 2z*. This is a prime
9(z) = (g +i5> 2+ (2-3i) 2%z period-n point unless it is also fixed point of F¥
for k<n. But this is impossible since z* € Ai, k=
where i = v/—1. Determine the stability of the fixed point 0,1,---,n gives that I"(z*) € [y for k=1,2,... n—
2= 0. /5 2 and we also have F"7'(z*) € I;. (The case F"'(2*) €

IonI; = {b} can be excluded since it would imply

n=3.) This completes the proof. [2 marks]

(i) The fixed points of f, satisfy r=z+2’+u,
i.e. x=d=4/—pu for £ <0 [3 marks].

(ii) This is the standard example of a saddle-node
(or blue-sky) bifurcation [1 mark]. For u<
0, there are two fixed points and these collide
and disappear when =0 [1 mark].

Solution. (b)

(a) This is textbook work (see chapter 4 of notes). To
prove this, we consider the mapping F' with period-3
orbit (a,b,c); i.e., we have F(a) =b,F(b) =¢, F(c) =
a. We shall assume that a < b < ¢ (the case a <

¢<b is treated similarly) [2 marks]. Let us define (c) We have that A = 3% has unit modulus [1 mark].
In=a,b] and I = [b,c] [1 mark]. Four observations Thus °
are used in the proof [4 marks]: 5 T s
Q) F(I) D 1. lg(2)|* = ()\Z-FCZZZ)({\Z-FCZZZ)
(i1) F(L) 2 L, UI,. = |z + (A + A |z[* + ||

(iii) If I is a closed interval and F(I) DI, then

= |2[* + 2Re(A0)|2[* + O(|2[%).
F has a fixed point in [. 21" + 2Re(A9)|2[" + O(|2]")

(iv) Suppose I, J are closed intervals. If F(I)D [3 marks]. For z sufficiently close to 0, the |z|*
J, then there exists a closed interval K C term dominates the higher order terms. We compute
I such that F(K)=J. that
The last two observations are deduced from the intermediate \e — 344 « (2+3i)
value theorem, since F is continuous [1 mark]. We 5
start the proof by noting that (3(a)ii) and (3(a)iii) _ —6+17
imply that F has a fixed point in [; [1 mark]. Also, B 5
(3(a)i--3(a)iii) imply that F? has a fixed point in so its real part is negative. This shows that |g(z)| <
Iy, so that F has a period-2 orbit [2 marks]. Thus, |z| for all z#0, close to 0, hence z =0 is stable
the n =1 and n =2 cases are proven and henceforth [1 mark].

we assume n > 3. Now we construct a nested sequence
of closed intervals A,: let Ay = I;, (3(a)il) and
(3(a)iv) imply that there is a A; C Ay with F(4;) =



(4) Define a dynamical system on R? by (¢) We have that
o ut 4 2u—
[ — _ 169, + a2 + 17xn7 I =utvi+uv. = v ++ 2“’, [1 mark]
3 n 3 (DS) Y U+ u
2 7yn 8$n S0,

Yn+1 = — (yn“l’«’l;n) - 3 3 .
u” T—y
[u*} = {—x N Qy} [1 mark]

(a) Show that the origin is a hyperbolic fixed point of (DS). (DS) is transformed into

/3 U, [z Y,
ntl| = AL T I 1 mark
1 |:“I+1} | = Tnt1 + 2yn+1} [ ]
(b) Let v, = L] (resp. v_ = {ﬂ) span the stable (resp. [ 7163?}71 +a? 4 1735% _ (7(yn+mn)z _ 7§n 8%
unstable) subspace of (0,0). Find v and v_. /2 = ) [1 mark]
16yn+I2+17xn +2( = (Yo + z0)° @—&-%
. . L i 3 n 3 Yn n 3 3
9 It i ool 1) o [
' T ' Tn/3+ 2yn/3 + 7} — 20 + yn)°
+ ot +12 +,,— —\2 r
Upyy =ty + po(ty )" + prtty u, + pa(uy,) | 3wy + (ut + 2u;)? + (2u + 3uy,)?
Uy = bu, + qo(ul)? + vy, + ga(uy)? Lt /3 = (u) + 2u,)? = 2(2u) + 3u,)?
Determine the coefficients a, b, p;, ¢; for i,j =0,1,2. /6 Thus,
b=3, @=5 @=16, ¢=13
(d) Find the Maclaurin series for W}, and W, up to second a=1/3, po=-9, p=-28 py=—22 [2 marks].

order, in the coordinates (u™,u™). /10 _ 9 )
(d) Assume that u™ = g(u™) =as(u™)*+--- is the local

unstable manifold expressed as the graph of a function
up to second order [1 mark]. Then, if we ignore
all terms in u, of degree three or more,

(e) Sketch the stable and unstable subspaces and manifolds in
the (u*,u™) coordinates. Indicate how orbits beginning on
the manifolds behave and how nearby orbits behave. /4

1
ut, = gurf —9(uy )2 4 using part (c)

Solution. 1
= (gaz —N(uy) + - using u;” = ag(u;)* +---

(a) The linearization at [0,0] has the matrix .

while,
17/3 —16/3
{ 8//3 77//3 } (1 mark] ut = ag(upyy)? using invariance
—\2 .

= e 't .
which has characteristic polynomial $2—L§)I+1 and 9ax(uy )" + using part (c)

therefore its eigenvalues are 3,1/3 [2 marks]. We equate coefficients and deduce

(b) The stable eigenvector v, solves 33

16/3 —16/3 _|o 1 =13 [4 marks].
{8/3 —8/3} XV, = {O} = v, = {1} [1 mark].
Thus,
The unstable eigenvector is v_ = [2,1]7 by a similar

computation [1 mark]. Wie = {(=33(u7)*/13,u™)} (1 mark].
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As above, assume that u™ = h(ut) = by(u)2 +--- is
the local stable manifold expressed as the graph of
a function up to second order [1 mark]. Then, if
we ignore all terms in w, of degree three or more,

Upyy = 3u, + 5(“:)2 +ee

using part (c)

= (Bby +5)(u )2+ - using u;, = by(uf)* +---

while,

Upy1 = bZ(u;rl)Z +e
1

= gl

using invariance

using part (c).

We equate coefficients and deduce

45

bZZf% [2 marks].
Thus,
Wik, = {(u*, ~45(u")?/26)} 1 mark].
(e)
u+
P07 00 Tdodgh VAN NN NN
D/ A A A A e L O B WL WL N N N
P77 700 0T T A VA VNN NN
VAR A A A I | LN SR N N NNV
L7 A VN NN NN
J7 777 7 1 oo N NN NN NN
///////77“1\\\\\\\\\
J7 77777 7T T3 NN NN NN NN
777777777 TN NN NN NN
;;///////b\\\\\\\§\\
e - S~
SN o =S
/\\\\NNLUZ////////
T7NNNVAVNV YWV S
\/LLX&&Lo’joﬂflllll/////
/N T L A
—/ bbby Vb bl LS
=/ 0 VL vEv b/
////HLHLIHLH/////
2L 028 L
= =W, ]

FIGURE 4. The stable and unstable manifolds of (DS).

E* = y*-axis.

(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].
(iii) Correct arrows [1 mark].



