May 2008 Dynamical Systems

(1) Define a map $\mathbf{f} : \mathbb{R}^2 \to \mathbb{R}^2$ by

$$\mathbf{f}(\mathbf{x}) = \begin{bmatrix} \alpha - \beta u - v^2, \\ v \end{bmatrix}, \qquad \text{where } \mathbf{x} = \begin{bmatrix} v \\ u \end{bmatrix}$$

and $\alpha, \beta \in \mathbb{R}$ are parameters. As usual, we define a dynamical system by

$$\mathbf{x}_{n+1} = \mathbf{f}(\mathbf{x}_n) \tag{DS}$$

MAT-4-DSv

for $n \ge 0$.

(a) Determine the set $A = \{(\alpha, \beta) \in \mathbb{R}^2 : \mathbf{f} \text{ has at least one fixed point }\}.$ /5

- (b) Determine the stability of the linearized dynamical system at each fixed point when $\alpha = 4, \beta = 2$. Are these fixed points sinks, sources, saddles or centres? /5
- (c) When $\alpha = 0$ and $\beta = 2$, the origin [0,0] is a fixed point. Does the linearized system determine the stability of this fixed point? Explain. /5
- (d) Continuing with $\alpha = 0, \beta = 2$, introduce the complex variable $z = \gamma u + v$ and transform (DS) into the system

$$z_{n+1} = \lambda z_n + a z_n^2 + b z_n \bar{z}_n + c \bar{z}_n^2 \tag{CDS}$$

- Determine the constants γ, λ, a, b and c. (5)
- (e) Determine the stability of the fixed point z = 0 for the dynamical system

1

$$z_{n+1} = \lambda z_n + (-3+4i)z_n^2 \bar{z}_n$$

where $z \in \mathbb{C}$, $\lambda = \exp\left(\frac{i\pi}{7}\right)$ and $i^2 = -1$. /5

U01875

Dynamical Systems

(2) Let $\Sigma = \mathbb{Z}_2^{\mathbb{N}} = \{(\omega_0, \omega_1, \ldots) : \omega_j \in \{0, 1\} \ \forall j \ge 0\}.$ (a) Define the *shift map* $\sigma : \Sigma \to \Sigma.$ /5

(b) Shows that σ has exactly 2^n periodic points of period n for each $n \ge 1$. /5

(c) Compute the number of *prime* period n points for σ when n = 2, 3 and 6. /5

(d) Let

$$d(\omega, \eta) = \sum_{n=0}^{\infty} \frac{|\omega_n - \eta_n|}{2^{n+1}} \qquad \forall \omega, \eta \in \Sigma.$$

You may use the fact, without proving it, that (Σ, d) is a metric space. For each $\epsilon > 0$ and $\omega \in \Sigma$, define the ball

$$B_{\epsilon}(\omega) = \{\eta \in \Sigma : d(\omega, \eta) < \epsilon\}$$

and, for $N \in \mathbb{N}$, the cylinder

 $C_N(\omega) = \{ \eta \in \Sigma : \eta_0 = \omega_0, \cdots, \eta_N = \omega_N \}.$ *Prove:* Let N be the floor of $\log_2(\epsilon^{-1}) - 1$. Then $B_{\epsilon}(\omega)$ is contained in $C_N(\omega)$ and $B_{\epsilon}(\omega)$ contains $C_{N+1}(\omega)$. /5

(e) Show that σ has a dense orbit. /4

(f) Does σ have sensitive dependence on initial conditions? Explain. /1

[Please turn over]

2

U01875	Dynamical Systems 3			
(3) Let $G(x) = 6\sin(\pi x)$ for $x \in [0, 1]$.				
(a) Show that there are two subintervals $I_0 = [0, a]$ and $I_1 = [b, 1]$ of $I = [0, 1]$ such that $G^{-1}(I) = I_0 \cup I_1$.			
(b) G has two fixed points in I. Indicate their stability. $/2$;		
(0) Let $\Lambda = \{x \in I : \forall k \ge 0, G^k(x) \in I \}$. Describe Λ in terms of the sets I_0 and I_1 . /1			
(d) Define an itinerary map, h , for $G \Lambda$. /1			
(6) Show that the itinerary map is 1-1 and onto. [Indicate which, if any, theorems you use in the proof.] /5			
(f) Show that the itinerary map h conjugates $G \Lambda$ with the shift map $\sigma: \mathbb{Z}_2^{\mathbb{N}} \to \mathbb{Z}_2^{\mathbb{N}}$. /3			
(g) How many period-3 points does G have? How many prime period-6 points? /3	5		
(h) The map $F_{\lambda}(x) = -\lambda \arctan(x)$ undergoes what type of bifurcation as λ passes through 1 at $x = 0$? Explain why you know the type of bifurcation. /5			

(i) Let $H_{\mu}(x) = x + x^2 - \mu$. Determine the fixed point(s) of this map in terms of μ . What type of bifurcation does this map undergo? /3

U01875

Dynamical Systems

(4) Define a dynamical system on \mathbb{R}^2 by

$$\begin{array}{rcl} x_{n+1} &=& 2x_n - 4y_n + y_n^2 \\ y_{n+1} &=& \frac{1}{2}y_n + x_n^2. \end{array} \tag{DS}$$

(a) Show that the origin is a hyperbolic fixed point of (DS) .	/2
--	----

(b) Let $\mathbf{v}_{+} = \begin{bmatrix} * \\ 1 \end{bmatrix}$ (resp. $\mathbf{v}_{-} =$	$\begin{bmatrix} 1 \\ * \end{bmatrix}$) span the stable (resp.	unstable) subspace of
$(0,0)$. Find \mathbf{v}_+ and \mathbf{v} .	LJ	/3

(c) Introduce a system of coordinates (u⁺, u⁻) adapted to the stable and unstable subspaces. Express (DS) in the form

$$\begin{split} u_{n+1}^+ &= a u_n^+ + p_0 (u_n^+)^2 + p_1 u_n^+ u_n^- + p_2 (u_n^-)^2 \\ u_{n+1}^- &= b u_n^- + q_0 (u_n^+)^2 + q_1 u_n^+ u_n^- + q_2 (u_n^-)^2 \\ \end{split}$$
 Determine the coefficients a, b, p_i, q_j for $i, j = 0, 1, 2.$

- (d) Find the Maclaurin series for W_{loc}^+ and W_{loc}^- , up to second order, in the coordinates (u^+, u^-) . /10
- (e) Sketch the stable and unstable subspaces and manifolds in the (u^+, u^-) coordinates. Indicate how orbits beginning on the manifolds behave and how nearby orbits behave. /4

4