U01875 May 2008 MAT-4-DSy
Dynamical Systems

(1) Define a map f : R? — R? by

A a2
f(x) = [Oé fu—wv ’} , where x = {U]
v u
and «, f € R are parameters. As usual, we define a dynamical
system by
X1 = f(x,) (DS)
for n > 0.

(a) Determine the set A = {(o,8) € R* : f has at least one
fixed point }. /5

(b) Determine the stability of the linearized dynamical system
at each fixed point when o« = 4,3 = 2. Are these fixed
points sinks, sources, saddles or centres? /5

(¢) When a@ = 0 and 8 = 2, the origin [0, 0] is a fixed point.
Does the linearized system determine the stability of this
fixed point? Explain. /5

(d) Continuing with v = 0, § = 2, introduce the complex vari-
able z = yu + v and transform (D.S) into the system

Znyl = Aop + 22 + b2, 2, + 22 (CDS)

Determine the constants v, A, a,b and c. /5

(e) Determine the stability of the fixed point z = 0 for the
dynamical system

Znsl = Azp + (=3 + 40227,

i
where z € C, A = exp (7> and i = —1. /5

Solution.

(a) f has a fived point at (v,u) iff v = a—Bu—v? and
u=v [2 marks] iff u=v and vV’+(1+8)v—a =0 [1
mark]|. There are real f.p.s iff the discriminant
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A? = (1+8)*+4a is non-negative [1 mark]. Therefore,
1
a> —Z(l +B)?, B€R. [1 mark]

(b) When a« = 4,3 = 2, the fixed points are u = v =
1,—4 [1 mark|. The linearized map is

o —
dfpyu) = [ 1 06 } . [1 mark]
We get
8 —2 -2 =2
dfi_y—q = [ 1 0 ] , dfp ) = [ . 0 ] ) [1 mark]

In both cases, the determinant is 2> 1 so the fixed
point is unstable [1 mark]. In fact, in the first
case, the eigenvalues are 4++/14 so [—4,—4] is a
saddle; in the second case, the eigenvalues are —1+

i, so [1,1] is a spiral source. [l mark].
(c) The linearized map where o = 0,5 = 2 at x = [0,0]
is
0 -2
df[(]yo] = |: 1 0 :| []_ mark]

which has eigenvalues #iy/2 [1 mark]. The eigenvalues
have modulus large than unity [1 mark|, so the linearized
system does determine the stability of the nonlinear
system: it is an spiral source [2 marks].

(d) The A\ =i-th eigenvector of A =dfj, is

¢ = {1\1@] 1 mark]

This gives z = (t,x) = v +iv2u, v = A = i and
V2u =Sz, v==Rz. [1 mark].

Zn+1 = Up+1 + Z.\/ﬁun_i_l, []_ mark]
= —2u, — v + iv2u,,

= iV2(vn + iV 2u,) — v,

1
= iv2z, — Z(ZTQL + 22,7, + Z2). [1 mark]

This gives the result

A= V2, a=c=-1 b=-1 [1 mark]
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Remark.
Many of you expected the question/solution to be of
the following form:

(c’) The linearized map where a = 0,5 =1 at x = [0,0]

is
0 -1
df[(]yo] = |: 1 0 :| []_ mark]
which has eigenvalues =i [1 mark|. The eigenvalues

have unit modulus [1 mark], so the linearized system
does not determine the stability of the nonlinear
system [2 marks].

(d’) The A =i-th eigenvector of A = df[%,o] is

tz[%}. [1 mark]
This gives the inner product z = (t,x) = v + iu,
y=A=iand u=Sz, v==Rz. [l mark].
Znal = Upy1 + Uy, [1 mark]

2 .
= —Up — U,, + 1y,
. . 2
=i(v, +iu,) — v;,

1
= iz, — Z(zi + 22,7, + 22). [1 mark]

This gives the result
A= 1, a:c:—i, b:—%. [1 mark]

End of Remark.
(e) We know that

|Zn41]? = Zng1Zns1 = (Azn + c222,) (N2, + C222,)
= |2,]* + (A + EN) 2222 + |c|?|2n]°
= ]zn|2 + 25}?(05\)|zn|4 + |c\2|zn|6 [2 marks]

LT
where ¢ = —3+4:¢. By the hypothesis that A =exp (7) ,

we see that the real part of c)\ is negative (R(c)) =
—0.967) [1 mark]. Therefore, for small non-zero
Zn, we have

|Zns1]? < |2a]? [1 mark]

This proves that z =0 is a stable fixed point [1
mark] .



(2) Let ¥ =Z5 = {(wo,wr,...) : w; €{0,1} Vj > 0}.
(a) Define the shift map o : ¥ — 3. /5

(b) Shows that ¢ has exactly 2" periodic points of period n for
each n > 1. /5

(c) Compute the number of prime period n points for o when

n = 2,3 and 6. /5
(d) Let
— |wn = 14l
d(w,n)zzw Yw,n € X.
n=0

You may use the fact, without proving it, that (3, d) is a
metric space.
For each € > 0 and w € X, define the ball

Bw)={nes : dwn)<e)
and, for N € N, the cylinder
Cnw)={neX : n=wo, Ny =wn}.
Prove: Let N be the floor of log,(e™!) — 1. Then B.(w) is

contained in Cy(w) and B.(w) contains Cy1(w). /5
(e) Show that o has a dense orbit. /4

(f) Does o have sensitive dependence on initial conditions?
Explain. /1

Solution.

(a) For each w = (wp,ws,...) €2 [2 marks], we define
o(W)k = Wri1 Vk > 0, [3 marks].

(b) Let s be a word in Z, of length n. The infinite
w=5-5--- (s concatenated with itself infinitely
many times) lies in X, and o"(w) = §--+ = 5.+ =

sequence

W, 80 w 1s a periodic point of period n. This proves
there are at least 2" periodic points of period n,

since there are 2" such words [3 marks].
On the other hand, o"((wg,wr,-..)) = (Wn,Wni1,...) SO

w is a fixed point iff wy = wiy, for all k. Therefore,
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the binary word s = wy,ws,...,wy—1 determines the

periodic point w = s-s---. This shows that there

are at most 2" period-n periodic points [2 marks].
(c) Let P, be the number of period-n points and let p,

be the number of prime period-n points. We know that

P =P, — Z Dd; pP,=2" [3 marks].
dln,d<n
Thus

p =2 pp=2"—2"=2
p3=2-2"'=6 pg=2°-6-2-2=54  [2 marks].
(d) Let € >0 and w € ¥ be given. If n¢€ B.(w), then

dom<e = YLl
n=0

which implies that for all n

[wn = 1l

—n—1
ont1 <€ == Wy =m0, Ynst. 27" >e
If we let N be the floor of log,(e™!) —1, then we
arrive at
’I]EBE(CU) - Wo ="No,-.-,WN =T1N.

Thus 7 € Cy(w) [3 marks].
On the other hand, if 1 € Cny1(w), then

d(w,n) = Z % < 2N2Zﬁ =272 e
n=N+2 n=0
Thus 7 € B.(w) [2 marks].

(e) Let w € X be constructed as follows: let s; be the
binary word obtained by concatenating all binary words
of the fixed length k for £ >1. Let w=S1-59--"
be the concatenation of all these words [2 marks].

We claim that the orbit of w is dense. Indeed, let

n € 2 and € > 0 be given. Let N be defined as

in the previous question. We want to show that there

is an n such that o"(w) € B.(n), or, from above, that
0"(w) € Cny1(n). The binary word 7o, ,NnN41 OCCUrs

in syi2 and hence in w as some subsequence wp, - * ,WpiN+1
for some n. This proves that the orbit is dense since
n and € >0 were arbitrary [2 marks].

(f) Yes, the construction of the previous question is
easily adapted to prove this [1 mark].



(3) Let G(z) = 6sin(mx) for x € [0, 1].

(a) Show that there are two subintervals Iy = [0,a] and [; =
[b,1] of I =10,1] such that G™'(I) = [ U I;. /2

(b) G has two fixed points in I. Indicate their stability. /2

(c) Let A={x el : Vk >0, G*(z) € I }. Describe A in
terms of the sets Iy and 1. /1

(d) Define an itinerary map, h, for G|A. /1

(e) Show that the itinerary map is 1-1 and onto. [Indicate
which, if any, theorems you use in the proof.] /5

(f) Show that the itinerary map h conjugates G|A with the
shift map o : Z) — Z5. /3

(g) How many period-3 points does G have? How many prime

period-6 points? /3
(h) The map Fy(zr) = —Aarctan(xz) undergoes what type of
bifurcation as A\ passes through 1 at x = 07 Explain why
you know the type of bifurcation. /5

(i) Let H,(z) = x + 2* — . Determine the fixed point(s) of
this map in terms of u. What type of bifurcation does this
map undergo? /3

Solution.

(a) Since G is continuous on [0,1/2] and G(0) =0,G(1/2) =
6, the intermediate value theorem says that there
exists a € (0,1/2) s.t. G(a)=1. Since G is increasing
on [0,1/2], a is unique. Since G is symmetric about
1/2, the point b exists, is unique and equals 1—
a. [ a=mn"tarcsin(1/6) gets only one mark. ]

(b) We know that the fixed points of G lie in [y U [4
since they stay in / under an iteration [1 mark].
We know that G'(z) = 67 cos(mx), which is decreasing
on [0,1/2] so G'(z) > 6mcos(ma) = 67/35/6 > 1 on



(c)
(d)

(e)

Iwo,‘..,wn

(£

7

Iy. By symmetry, |G'(z)| > 735 on [yUI,. Therefore,
the fixed points are repellers [1 mark].

A is the set of points in [yUIl; whose positive orbit
lies in [pyUI; [1 mark].

Given = € A, define the itinerary map h(r) to equal
w € X iff G¥(z) € I,, for all k¥ > 0 [1 mark].
Since IpNI; =, this is well-defined.

Proof that A is 1-1 and onto. For each n >0 and

w € Y, define

{rel : GFx)el, YVk=0...n }. [1 mark]

Let u = w35, which is a lower bound for |G’'| on
Iyul.

CLAIM. I, ., is an interval in [,, of length < p™"
for all w,n [1 mark].

CHECK. If n =0, then the claim follows since Iy,

is an interval of length at most 1= pu . Therefore,
assume the claim is true for <n—1 and all w. The
set I, . ., is therefore an interval in [/, of length

< p "', The set I, ., is therefore the intersection
of G'(I,,.. .,) with I, . Since GJI,, is a homeomorphism,
we have proven that [, ., is an interval. To prove
the claim about the length, if z,y € I,  .,, then

|G(x) — G(y)] < w™'. On the other hand, the MVT

plus the lower bound for |G'| gives |G(z)—G(y)| >
plr—y|. Putting the two inequalities together shows
that |r—y| < ™™, which proves the claim [2 marks].
CLAIM. h is onto and 1-1.

CHECK. For each w € Y, the sets are nested: Iwo D
Iwo,wl D ~~Iw0,m,wn D ---. ©Since each is compact,
their intersection is non-empty. This proves that

h is onto. Since the diameter goes to zero, there

is a unique point z in their intersection. This proves
h is 1-1 [1 mark].

Let x € A and let w=h(x). Then

h(r)=w <= Yk>0: FFx)el, [1 mark]
= Vk>0: FYF(2)) € L,
= Vk>0: FMF(2)€ L, [1 mark]

(g)

= h(F(z)) =0o(w) = o(h(z)).

Since x was arbitrary, this proves that h conjugates
F|A and o [1 mark].

Since any periodic point of G must lie in A, and

h is a conjugacy, it suffices to count periodic points



(h)

d(F o F)

O\

(1)

of the shift map [2 marks]. We have counted these
already: there are 6 prime period-3 and 54 prime
period-6 points [1 mark].

We see that F'(0) = —A, F(0) = 0 so as \ passes
through 1 we expect a flip (period-doubling) bifurcation
[3 marks]. Indeed, F'(x) = —\/(1+ 2?), F"(z) =
2zA(1+2?)7? and F"(0) =2\ =2 when A\ =1, while

a / /
N oA A=1,2=0 FF@E) Flo)
0 22
2 rm1amo (1 F?)(1+2?)
- 2 2F?
(I FP)(1+22) (14 F22(1422) [2yamg
= 2.

This verifies the hypotheses of the period-doubling
bifurcation theorem [2 marks].

Remark.

Many students computed the Schwartzian derivative
of Flat A\=1,2=0:

F///(O) 3 F”(O) 2

- F(0) 2 lF’(O)] N

They concluded that there was a supercritical flip
bifurcation. This was awarded [2 marks|, also.
End of Remark.

The fixed points of H, satisfy z =ax+az’—p, i.e.

r =%/ for p>0 [2 marks]. This is the standard
example of a saddle-node (or blue-sky) bifurcation

[1 mark].

D{F}(0)



(4) Define a dynamical system on R? by

Tpr1 = 2z, —4y, + y2
n DS
Yn+1 = %yn + .I'i ( )

(a) Show that the origin is a hyperbolic fixed point of (DS).
/2

(b) Let v, = lﬂ (resp. v_ = lﬂ) span the stable (resp.
unstable) subspace of (0,0). Find v and v_. /3

(¢) Introduce a system of coordinates (u™,u™) adapted to the
stable and unstable subspaces. Express (DS) in the form

ul oy = aut + po(u))? + pruu, + pa(uy)?
Uy = buy + qo(ul)? + v, + ga(uy,)?

Determine the coefficients a, b, p;, ¢; for i,j =0,1,2. /6

(d) Find the Maclaurin series for W," and W, _, up to second

order, in the coordinates (u™,u™). /10

(e) Sketch the stable and unstable subspaces and manifolds in
the (u*,u™) coordinates. Indicate how orbits beginning on
the manifolds behave and how nearby orbits behave. /4

Solution.

(a) The linearization at [0,0] has the matrix

2 -4
{0 1/2] [1 mark]|
which has eigenvalues 2,1/2 [1 mark].
(b) The unstable eigenvector is v_ = [1,0]7 [1 mark]
while the stable eigenvector v, solves
3/2 —4 0 8/3
[é O}XVJr:[O] = V+:|:{:| [2 marks].
(c) We have that
+ —
[ﬂ =utvy+uv. = {u 8/5++u ] [1 mark]



so,

{u} _ [m —8y/3] 1 mark]

ut Y

(DS) is transformed into

} e —yg;riﬂ / 3] [1 mark]
| 2(%n — 8ya/3) +yh — Sxi/S} [1 mark]

ul /24 (u;, + 8ut/3)? }

2uy, + (u)? = § % (uy, + 8uf/3)

wh /2 + (u,;)? 4+ 16u, u} /3 + 64(u)?/9
2u,, — 8(u;,)?/3 — 128u, uf /9 — 485(w})?/27)

n

Thus,

a=1/2, py=064/9, p1 = 16/3, pe=1

b = 2, C]o == _485/277 ql e _128/9’ q2 — _8/3 [2 markS].

(d) Assume that ut =g(u~) =ax(u")?+--- is the local
unstable manifold expressed as the graph of a function

up to second order [1 mark]. Then, if we ignore
all terms in wu,, of degree three or more,
1 .
Ul = §u,+b + (uy )2+ - - using part (c)
1 . _
= (Ga2 + D(up)* -+ using uy = as(uy)* + -
while,
Ut = ag(uy )+ using invariance
= dag(u; )* + - using part (c).

We equate coefficients and deduce

2
az =7 [4 marks].
Thus,
VVl;c = {(Q(U_)2/77 u_>} []. mark].
As above, assume that u~ = h(u") = by(ut)?+--- is

the local stable manifold expressed as the graph of
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a function up to second order [1 mark|. Then, if
we ignore all terms in u, of degree three or more,

Uy = 2u, — 42175@*)2 + - using part (c)
(2@—%)@ )24 using u, = bo(ul)* + - -
while,
Uy = bo(uf )+ using invariance
= ZbQ(u:{f e using part (c).
We equate coefficients and deduce
bQZ%X$:% [2 marks].
Thus,
Wik = {(u",1940(u")?/189)} [1 mark].

(e)
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FIGURE 1. The stable and unstable manifolds of (DS).
E* = y*-axis.

(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].
(iii) Correct arrows [1 mark].



