(1) Define a map $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\mathbf{f}(\mathbf{x})=\left[\begin{array}{c}
\alpha-\beta u-v^{2}, \\
v
\end{array}\right], \quad \text { where } \mathbf{x}=\left[\begin{array}{l}
v \\
u
\end{array}\right]
$$

and $\alpha, \beta \in \mathbb{R}$ are parameters. As usual, we define a dynamical system by

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{f}\left(\mathbf{x}_{n}\right) \tag{DS}
\end{equation*}
$$

for $n \geq 0$.
(a) Determine the set $A=\left\{(\alpha, \beta) \in \mathbb{R}^{2}: \mathbf{f}\right.$ has at least one fixed point $\}$.
(b) Determine the stability of the linearized dynamical system at each fixed point when $\alpha=4, \beta=2$. Are these fixed points sinks, sources, saddles or centres?
(c) When $\alpha=0$ and $\beta=2$, the origin $[0,0]$ is a fixed point. Does the linearized system determine the stability of this fixed point? Explain.
(d) Continuing with $\alpha=0, \beta=2$, introduce the complex variable $z=\gamma u+v$ and transform $(D S)$ into the system

$$
\begin{equation*}
z_{n+1}=\lambda z_{n}+a z_{n}^{2}+b z_{n} \bar{z}_{n}+c \bar{z}_{n}^{2} \tag{CDS}
\end{equation*}
$$

Determine the constants γ, λ, a, b and c.
(e) Determine the stability of the fixed point $z=0$ for the dynamical system

$$
\begin{gather*}
z_{n+1}=\lambda z_{n}+(-3+4 i) z_{n}^{2} \bar{z}_{n} \\
\text { where } z \in \mathbb{C}, \lambda=\exp \left(\frac{i \pi}{7}\right) \text { and } i^{2}=-1
\end{gather*}
$$

Solution.

(a) \mathbf{f} has a fived point at (v, u) iff $v=\alpha-\beta u-v^{2}$ and $u=v$ [2 marks] iff $u=v$ and $v^{2}+(1+\beta) v-\alpha=0$ [1 mark]. There are real f.p.s iff the discriminant

$$
\begin{aligned}
\Delta^{2} & =(1+\beta)^{2}+4 \alpha \text { is non-negative [1 mark]. Therefore, } \\
& \alpha \geq-\frac{1}{4}(1+\beta)^{2}, \quad \beta \in \mathbb{R} . \quad[\mathbf{1} \text { mark }]
\end{aligned}
$$

(b) When $\alpha=4, \beta=2$, the fixed points are $u=v=$ $1,-4[1$ mark]. The linearized map is

$$
d \mathbf{f}_{[v, u]}=\left[\begin{array}{cc}
-2 v & -\beta \\
1 & 0
\end{array}\right] . \quad[\mathbf{1} \operatorname{mark}]
$$

We get
$d \mathbf{f}_{[-4,-4]}=\left[\begin{array}{cc}8 & -2 \\ 1 & 0\end{array}\right], \quad d \mathbf{f}_{[1,1]}=\left[\begin{array}{cc}-2 & -2 \\ 1 & 0\end{array}\right] . \quad[\mathbf{1}$ mark $]$
In both cases, the determinant is $2>1$ so the fixed point is unstable [$1 \mathbf{m a r k}$]. In fact, in the first case, the eigenvalues are $4 \pm \sqrt{14}$ so $[-4,-4]$ is a saddle; in the second case, the eigenvalues are $-1 \pm$ i, so $[1,1]$ is a spiral source. [1 mark].
(c) The linearized map where $\alpha=0, \beta=2$ at $\mathbf{x}=[0,0]$ is

$$
d \mathbf{f}_{[0,0]}=\left[\begin{array}{cc}
0 & -2 \\
1 & 0
\end{array}\right] \quad[\mathbf{1} \text { mark }]
$$

which has eigenvalues $\pm i \sqrt{2}$ [$\mathbf{1}$ mark]. The eigenvalues have modulus large than unity [1 mark], so the linearized system does determine the stability of the nonlinear system: it is an spiral source [2 marks].
(d) The $\lambda=i$-th eigenvector of $A=d \mathbf{f}_{[0,0]}^{T}$ is

$$
\mathbf{t}=\left[\begin{array}{c}
1 \\
i \sqrt{2}
\end{array}\right] . \quad[\mathbf{1} \text { mark }]
$$

This gives $z=\langle\mathbf{t}, \mathbf{x}\rangle=v+i \sqrt{2} u, \gamma=\lambda=i$ and $\sqrt{2} u=\Im z, v=\Re z . \quad[\mathbf{1}$ mark].
$z_{n+1}=v_{n+1}+i \sqrt{2} u_{n+1}$,
[1 mark]
$=-2 u_{n}-v_{n}^{2}+i \sqrt{2} v_{n}$,
$=i \sqrt{2}\left(v_{n}+i \sqrt{2} u_{n}\right)-v_{n}^{2}$,
$=i \sqrt{2} z_{n}-\frac{1}{4}\left(z_{n}^{2}+2 z_{n} \bar{z}_{n}+\bar{z}_{n}^{2}\right) . \quad[\mathbf{1}$ mark $]$

This gives the result

$$
\lambda=i \sqrt{2}, \quad a=c=-\frac{1}{4}, \quad b=-\frac{1}{2} . \quad[\mathbf{1} \text { mark }]
$$

Remark.

Many of you expected the question/solution to be of the following form:
(c') The linearized map where $\alpha=0, \beta=1$ at $\mathbf{x}=[0,0]$ is

$$
d \mathbf{f}_{[0,0]}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

[1 mark]
which has eigenvalues $\pm i$ [1 mark]. The eigenvalues have unit modulus [1 mark], so the linearized system does not determine the stability of the nonlinear system [2 marks].
(d') The $\lambda=i$-th eigenvector of $A=d \mathbf{f}_{[0,0]}^{T}$ is

$$
\mathbf{t}=\left[\begin{array}{l}
1 \\
i
\end{array}\right] . \quad[\mathbf{1} \text { mark }]
$$

This gives the inner product $z=\langle\mathbf{t}, \mathbf{x}\rangle=v+i u$, $\gamma=\lambda=i$ and $u=\Im z, v=\Re z . \quad[1 \quad$ mark].

$$
z_{n+1}=v_{n+1}+i u_{n+1}
$$

$$
=-u_{n}-v_{n}^{2}+i v_{n}
$$

$$
=i\left(v_{n}+i u_{n}\right)-v_{n}^{2}
$$

$$
=i z_{n}-\frac{1}{4}\left(z_{n}^{2}+2 z_{n} \bar{z}_{n}+\bar{z}_{n}^{2}\right) . \quad[\mathbf{1} \text { mark }]
$$

This gives the result

$$
\lambda=i, \quad a=c=-\frac{1}{4}, \quad b=-\frac{1}{2} . \quad[\mathbf{1} \text { mark }]
$$

End of Remark.
(e) We know that

$$
\begin{aligned}
\left|z_{n+1}\right|^{2} & =z_{n+1} \bar{z}_{n+1}=\left(\lambda z_{n}+c z_{n}^{2} \bar{z}_{n}\right)\left(\bar{\lambda} \bar{z}_{n}+\bar{c} \bar{z}_{n}^{2} z_{n}\right) \\
& =\left|z_{n}\right|^{2}+(c \bar{\lambda}+\bar{c} \lambda) z_{n}^{2} \bar{z}_{n}^{2}+|c|^{2}\left|z_{n}\right|^{6} \\
& =\left|z_{n}\right|^{2}+2 \Re(c \bar{\lambda})\left|z_{n}\right|^{4}+|c|^{2}\left|z_{n}\right|^{6} \quad[\mathbf{2} \text { marks }]
\end{aligned}
$$

where $c=-3+4 i . \quad$ By the hypothesis that $\lambda=\exp \left(\frac{i \pi}{7}\right)$, we see that the real part of $c \bar{\lambda}$ is negative $(\Re(c \bar{\lambda}) \cong$ -0.967) [1 mark]. Therefore, for small non-zero z_{n}, we have

$$
\left|z_{n+1}\right|^{2}<\left|z_{n}\right|^{2}
$$

This proves that $z=0$ is a stable fixed point $[\mathbf{1}$ mark].
(2) Let $\Sigma=\mathbb{Z}_{2}^{\mathbb{N}}=\left\{\left(\omega_{0}, \omega_{1}, \ldots\right): \omega_{j} \in\{0,1\} \forall j \geq 0\right\}$.
(a) Define the shift map $\sigma: \Sigma \rightarrow \Sigma$.
(b) Shows that σ has exactly 2^{n} periodic points of period n for each $n \geq 1$.
(c) Compute the number of prime period n points for σ when $n=2,3$ and 6 .
(d) Let

$$
d(\omega, \eta)=\sum_{n=0}^{\infty} \frac{\left|\omega_{n}-\eta_{n}\right|}{2^{n+1}} \quad \forall \omega, \eta \in \Sigma
$$

You may use the fact, without proving it, that (Σ, d) is a metric space.
For each $\epsilon>0$ and $\omega \in \Sigma$, define the ball

$$
B_{\epsilon}(\omega)=\{\eta \in \Sigma: d(\omega, \eta)<\epsilon\}
$$

and, for $N \in \mathbb{N}$, the cylinder

$$
C_{N}(\omega)=\left\{\eta \in \Sigma: \eta_{0}=\omega_{0}, \cdots, \eta_{N}=\omega_{N}\right\} .
$$

Prove: Let N be the floor of $\log _{2}\left(\epsilon^{-1}\right)-1$. Then $B_{\epsilon}(\omega)$ is contained in $C_{N}(\omega)$ and $B_{\epsilon}(\omega)$ contains $C_{N+1}(\omega)$. /5
(e) Show that σ has a dense orbit.
(f) Does σ have sensitive dependence on initial conditions? Explain.

Solution.

(a) For each $\omega=\left(\omega_{0}, \omega_{1}, \ldots\right) \in \Sigma$ [2 marks], we define

$$
\sigma(\omega)_{k}=\omega_{k+1} \quad \forall k \geq 0, \quad[3 \text { marks }]
$$

(b) Let s be a word in \mathbb{Z}_{2} of length n. The infinite sequence $\omega=s \cdot s \cdots$ (s concatenated with itself infinitely many times) lies in Σ, and $\sigma^{n}(\omega)=\cdot s \cdots=s \cdots=$ ω, so ω is a periodic point of period n. This proves there are at least 2^{n} periodic points of period n, since there are 2^{n} such words [3 marks]. On the other hand, $\sigma^{n}\left(\left(\omega_{0}, \omega_{1}, \ldots\right)\right)=\left(\omega_{n}, \omega_{n+1}, \ldots\right)$ so ω is a fixed point iff $\omega_{k}=\omega_{k+n}$ for all k. Therefore,
the binary word $s=\omega_{0}, \omega_{1}, \ldots, \omega_{n-1}$ determines the periodic point $\omega=s \cdot s \cdots$. This shows that there are at most 2^{n} period- n periodic points [2 marks].
(c) Let P_{n} be the number of period- n points and let p_{n} be the number of prime period-n points. We know that

$$
p_{n}=P_{n}-\sum_{d \mid n, d<n} p_{d}, \quad \quad P_{n}=2^{n} \quad[3 \text { marks }]
$$

Thus

$$
\begin{array}{ll}
p_{1}=2^{1} & p_{2}=2^{2}-2^{1}=2 \\
p_{3}=2^{3}-2^{1}=6 & p_{6}=2^{6}-6-2-2=54
\end{array} \quad[\mathbf{2} \text { marks }] .
$$

(d) Let $\epsilon>0$ and $\omega \in \Sigma$ be given. If $\eta \in B_{\epsilon}(\omega)$, then

$$
d(\omega, \eta)<\epsilon \quad \Longleftrightarrow \quad \sum_{n=0}^{\infty} \frac{\left|\omega_{n}-\eta_{n}\right|}{2^{n+1}}<\epsilon
$$

which implies that for all n

$$
\frac{\left|\omega_{n}-\eta_{n}\right|}{2^{n+1}}<\epsilon \quad \Longrightarrow \quad \omega_{n}=\eta_{n} \quad \forall n \text { s.t. } 2^{-n-1} \geq \epsilon
$$

If we let N be the floor of $\log _{2}\left(\epsilon^{-1}\right)-1$, then we arrive at

$$
\eta \in B_{\epsilon}(\omega) \quad \Longrightarrow \quad \omega_{0}=\eta_{0}, \ldots, \omega_{N}=\eta_{N}
$$

Thus $\eta \in C_{N}(\omega)$ [3 marks].
On the other hand, if $\eta \in C_{N+1}(\omega)$, then

$$
d(\omega, \eta)=\sum_{n=N+2} \frac{\left|\omega_{n}-\eta_{n}\right|}{2^{n+1}} \leq 2^{-N-2} \sum_{n=0} \frac{1}{2^{n+1}}=2^{-N-2}<\epsilon
$$

Thus $\eta \in B_{\epsilon}(\omega)$ [2 marks].
(e) Let $\omega \in \Sigma$ be constructed as follows: let s_{k} be the binary word obtained by concatenating all binary words of the fixed length k for $k \geq 1$. Let $\omega=s_{1} \cdot s_{2} \ldots$ be the concatenation of all these words [2 marks]. We claim that the orbit of ω is dense. Indeed, let $\eta \in \Sigma$ and $\epsilon>0$ be given. Let N be defined as in the previous question. We want to show that there is an n such that $\sigma^{n}(\omega) \in B_{\epsilon}(\eta)$, or, from above, that $\sigma^{n}(\omega) \in C_{N+1}(\eta)$. The binary word $\eta_{0}, \cdots, \eta_{N+1}$ occurs in s_{N+2} and hence in ω as some subsequence $\omega_{n}, \cdots, \omega_{n+N+1}$ for some n. This proves that the orbit is dense since η and $\epsilon>0$ were arbitrary [2 marks].
(f) Yes, the construction of the previous question is easily adapted to prove this [1 mark].
(3) Let $G(x)=6 \sin (\pi x)$ for $x \in[0,1]$.
(a) Show that there are two subintervals $I_{0}=[0, a]$ and $I_{1}=$ $[b, 1]$ of $I=[0,1]$ such that $G^{-1}(I)=I_{0} \cup I_{1} . \quad / 2$
(b) G has two fixed points in I. Indicate their stability.
(c) Let $\Lambda=\left\{x \in I: \forall k \geq 0, G^{k}(x) \in I\right\}$. Describe Λ in terms of the sets I_{0} and I_{1}.
(d) Define an itinerary map, h, for $G \mid \Lambda$.
(e) Show that the itinerary map is 1-1 and onto. [Indicate which, if any, theorems you use in the proof.]
(f) Show that the itinerary map h conjugates $G \mid \Lambda$ with the shift map $\sigma: \mathbb{Z}_{2}^{\mathbb{N}} \rightarrow \mathbb{Z}_{2}^{\mathbb{N}}$.
(g) How many period-3 points does G have? How many prime period-6 points?
(h) The map $F_{\lambda}(x)=-\lambda \arctan (x)$ undergoes what type of bifurcation as λ passes through 1 at $x=0$? Explain why you know the type of bifurcation.
(i) Let $H_{\mu}(x)=x+x^{2}-\mu$. Determine the fixed point(s) of this map in terms of μ. What type of bifurcation does this map undergo?

Solution.

(a) Since G is continuous on $[0,1 / 2]$ and $G(0)=0, G(1 / 2)=$ 6 , the intermediate value theorem says that there exists $a \in(0,1 / 2)$ s.t. $G(a)=1$. Since G is increasing on $[0,1 / 2], a$ is unique. Since G is symmetric about $1 / 2$, the point b exists, is unique and equals $1-$ a. [$a=\pi^{-1} \arcsin (1 / 6)$ gets only one mark.]
(b) We know that the fixed points of G lie in $I_{0} \cup I_{1}$ since they stay in I under an iteration [1 mark]. We know that $G^{\prime}(x)=6 \pi \cos (\pi x)$, which is decreasing on $[0,1 / 2]$ so $G^{\prime}(x) \geq 6 \pi \cos (\pi a)=6 \pi \sqrt{35} / 6>1$ on
I_{0}. By symmetry, $\left|G^{\prime}(x)\right| \geq \pi \sqrt{35}$ on $I_{0} \cup I_{1}$. Therefore, the fixed points are repellers [1 mark].
(c) Λ is the set of points in $I_{0} \cup I_{1}$ whose positive orbit lies in $I_{0} \cup I_{1}$ [1 mark].
(d) Given $x \in \Lambda$, define the itinerary map $h(x)$ to equal $\omega \in \Sigma$ iff $G^{k}(x) \in I_{\omega_{k}}$ for all $k \geq 0$ [1 mark]. Since $I_{0} \cap I_{1}=\emptyset$, this is well-defined.
(e) Proof that h is $1-1$ and onto. For each $n \geq 0$ and $\omega \in \Sigma$, define
$I_{\omega_{0}, \ldots, \omega_{n}}=\left\{x \in I: \quad G^{k}(x) \in I_{\omega_{k}} \forall k=0 \ldots n\right\}$.
[1 mark]
Let $\mu=\pi \sqrt{35}$, which is a lower bound for $\left|G^{\prime}\right|$ on $I_{0} \cup I_{1}$.
CLAIM. $I_{\omega_{0}, \ldots, \omega_{n}}$ is an interval in $I_{\omega_{0}}$ of length $\leq \mu^{-n}$ for all $\omega, n \quad[\mathbf{1}$ mark].
CHECK. If $n=0$, then the claim follows since $I_{0,1}$ is an interval of length at most $1=\mu^{-0}$. Therefore, assume the claim is true for $\leq n-1$ and all ω. The set $I_{\omega_{1}, \ldots, \omega_{n}}$ is therefore an interval in $I_{\omega_{1}}$ of length $\leq \mu^{-n+1}$. The set $I_{\omega_{0}, \ldots, \omega_{n}}$ is therefore the intersection of $G^{-1}\left(I_{\omega_{1}, \ldots, \omega_{n}}\right)$ with $I_{\omega_{0}}$. Since $G \mid I_{\omega_{0}}$ is a homeomorphism, we have proven that $I_{\omega_{0}, \ldots, \omega_{n}}$ is an interval. To prove the claim about the length, if $x, y \in I_{\omega_{0}, \ldots, \omega_{n}}$, then $|G(x)-G(y)| \leq \mu^{-n+1}$. On the other hand, the MVT plus the lower bound for $\left|G^{\prime}\right|$ gives $|G(x)-G(y)| \geq$ $\mu|x-y|$. Putting the two inequalities together shows that $|x-y| \leq \mu^{-n}$, which proves the claim [2 marks]. CLAIM. h is onto and $1-1$.
CHECK. For each $\omega \in \Sigma$, the sets are nested: $I_{\omega_{0}} \supset$ $I_{\omega_{0}, \omega_{1}} \supset \cdots I_{\omega_{0}, \ldots, \omega_{n}} \supset \cdots . \quad$ Since each is compact, their intersection is non-empty. This proves that h is onto. Since the diameter goes to zero, there is a unique point x in their intersection. This proves h is 1-1 [1 mark].
(f) Let $x \in \Lambda$ and let $\omega=h(x)$. Then

$$
\begin{array}{rlrl}
h(x)=\omega & \Longleftrightarrow \forall k \geq 0: \quad F^{k}(x) \in I_{\omega_{k}} & & \text { [1 mark] } \\
& \Longrightarrow \forall k \geq 0: \quad F^{k}(F(x)) \in I_{\omega_{k+1}} & & \\
& \Longrightarrow \forall k \geq 0: \quad F^{k}(F(x)) \in I_{\sigma(\omega)_{k}} & {[\mathbf{1} \text { mark] }} \\
& \Longrightarrow h(F(x))=\sigma(\omega)=\sigma(h(x)) . &
\end{array}
$$

Since x was arbitrary, this proves that h conjugates $F \mid \Lambda$ and σ [1 mark].
(g) Since any periodic point of G must lie in Λ, and h is a conjugacy, it suffices to count periodic points
of the shift map [2 marks]. We have counted these already: there are 6 prime period- 3 and 54 prime period-6 points [1 mark].
(h) We see that $F^{\prime}(0)=-\lambda, F(0)=0$ so as λ passes through 1 we expect a flip (period-doubling) bifurcation [3 marks]. Indeed, $F^{\prime}(x)=-\lambda /\left(1+x^{2}\right), F^{\prime \prime}(x)=$ $2 x \lambda\left(1+x^{2}\right)^{-2}$ and $F^{\prime \prime \prime}(0)=2 \lambda=2$ when $\lambda=1$, while

$$
\begin{aligned}
\left.\frac{\partial(F \circ F)^{\prime}}{\partial \lambda}\right|_{\lambda=1, x=0} & =\left.\frac{\partial}{\partial \lambda}\right|_{\lambda=1, x=0} F^{\prime}(F(x)) \cdot F^{\prime}(x) \\
& =\left.\frac{\partial}{\partial \lambda}\right|_{\lambda=1, x=0} \frac{\lambda^{2}}{\left(1+F^{2}\right)\left(1+x^{2}\right)} \\
& =\frac{2 \lambda}{\left(1+F^{2}\right)\left(1+x^{2}\right)}-\left.\frac{2 F^{2}}{\left(1+F^{2}\right)^{2}\left(1+x^{2}\right)}\right|_{\lambda=1, x=0} \\
& =2 .
\end{aligned}
$$

This verifies the hypotheses of the period-doubling bifurcation theorem [2 marks].
Remark.
Many students computed the Schwartzian derivative of F at $\lambda=1, x=0$:

$$
D_{s}\{F\}(0)=\frac{F^{\prime \prime \prime}(0)}{F^{\prime}(0)}-\frac{3}{2}\left[\frac{F^{\prime \prime}(0)}{F^{\prime}(0)}\right]^{2}=-2 .
$$

They concluded that there was a supercritical flip bifurcation. This was awarded [2 marks], also. End of Remark.
(i) The fixed points of H_{μ} satisfy $x=x+x^{2}-\mu$, i.e. $x= \pm \sqrt{\mu}$ for $\mu \geq 0$ [2 marks]. This is the standard example of a saddle-node (or blue-sky) bifurcation [1 mark].
(4) Define a dynamical system on \mathbb{R}^{2} by

$$
\begin{align*}
& x_{n+1}=2 x_{n}-4 y_{n}+y_{n}^{2} \\
& y_{n+1}=\frac{1}{2} y_{n}+x_{n}^{2} . \tag{DS}
\end{align*}
$$

(a) Show that the origin is a hyperbolic fixed point of $(D S)$.
/2
(b) Let $\mathbf{v}_{+}=\left[\begin{array}{c}* \\ 1\end{array}\right]$ (resp. $\mathbf{v}_{-}=\left[\begin{array}{c}1 \\ *\end{array}\right]$) span the stable (resp. unstable) subspace of $(0,0)$. Find \mathbf{v}_{+}and \mathbf{v}_{-}. /3
(c) Introduce a system of coordinates $\left(u^{+}, u^{-}\right)$adapted to the stable and unstable subspaces. Express $(D S)$ in the form

$$
\begin{aligned}
& u_{n+1}^{+}=a u_{n}^{+}+p_{0}\left(u_{n}^{+}\right)^{2}+p_{1} u_{n}^{+} u_{n}^{-}+p_{2}\left(u_{n}^{-}\right)^{2} \\
& u_{n+1}^{-}=b u_{n}^{-}+q_{0}\left(u_{n}^{+}\right)^{2}+q_{1} u_{n}^{+} u_{n}^{-}+q_{2}\left(u_{n}^{-}\right)^{2}
\end{aligned}
$$

Determine the coefficients a, b, p_{i}, q_{j} for $i, j=0,1,2$.
(d) Find the Maclaurin series for $W_{l o c}^{+}$and $W_{\text {loc }}^{-}$, up to second order, in the coordinates $\left(u^{+}, u^{-}\right)$.
/10
(e) Sketch the stable and unstable subspaces and manifolds in the $\left(u^{+}, u^{-}\right)$coordinates. Indicate how orbits beginning on the manifolds behave and how nearby orbits behave. /4

Solution.

(a) The linearization at $[0,0]$ has the matrix

$$
\left[\begin{array}{cc}
2 & -4 \\
0 & 1 / 2
\end{array}\right] \quad[\mathbf{1} \text { mark }]
$$

which has eigenvalues $2,1 / 2$ [$\mathbf{1}$ mark].
(b) The unstable eigenvector is $\mathbf{v}_{-}=[1,0]^{T}\left[\begin{array}{ll}1 & \text { mark }]\end{array}\right.$ while the stable eigenvector \mathbf{v}_{+}solves

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 / 2 & -4 \\
0 & 0
\end{array}\right] \times \mathbf{v}_{+}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \quad \Longrightarrow \quad \mathbf{v}_{+}=\left[\begin{array}{c}
8 / 3 \\
1
\end{array}\right] \quad[\mathbf{2} \text { marks }] .} \\
& \quad \text { (c) We have that }
\end{aligned}
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=u^{+} \mathbf{v}_{+}+u^{-} \mathbf{v}_{-}=\left[\begin{array}{c}
u^{+} 8 / 3+u^{-} \\
u^{+}
\end{array}\right] \quad[\mathbf{1} \operatorname{mark}]
$$

$$
\begin{align*}
& \text { so, } \\
& {\left[\begin{array}{l}
u^{-} \\
u^{+}
\end{array}\right]=\left[\begin{array}{c}
x-8 y / 3 \\
y
\end{array}\right]} \\
& \text { (} D S \text {) is transformed into } \\
& \begin{aligned}
{\left[\begin{array}{c}
u_{n+1}^{+} \\
u_{n+1}^{+}
\end{array}\right] } & =\left[\begin{array}{c}
y_{n+1} \\
x_{n}-8 y_{n+1} / 3
\end{array}\right] \\
& =\left[\begin{array}{c}
y_{n} / 2+x_{n}^{2} \\
2\left(x_{n}-8 y_{n} / 3\right)+y_{n}^{2}-8 x_{n}^{2} / 3
\end{array}\right]
\end{aligned} \\
& =\left[\begin{array}{c}
u_{n}^{+} / 2+\left(u_{n}^{-}+8 u_{n}^{+} / 3\right)^{2} \\
2 u_{n}^{-}+\left(u_{n}^{+}\right)^{2}-\frac{8}{3} \times\left(u_{n}^{-}+8 u_{n}^{+} / 3\right)^{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
u_{n}^{+} / 2+\left(u_{n}^{-}\right)^{2}+16 u_{n}^{-} u_{n}^{+} / 3+64\left(u_{n}^{+}\right)^{2} / 9 \\
2 u_{n}^{-}-8\left(u_{n}^{-}\right)^{2} / 3-128 u_{n}^{-} u_{n}^{+} / 9-485\left(u_{n}^{+}\right)^{2} / 27
\end{array}\right] . \\
& \text { [1 mark] } \\
& \text { [1 mark] } \\
& \text { [1 mark] } \\
& \text { Thus, } \\
& \begin{array}{llll}
a=1 / 2, & p_{0}=64 / 9, & p_{1}=16 / 3, & p_{2}=1, \\
b=2, & q_{0}=-485 / 27, & q_{1}=-128 / 9, & q_{2}=-8 / 3
\end{array} \quad[\mathbf{2} \text { marks }] . \\
& \text { (d) Assume that } u^{+}=g\left(u^{-}\right)=a_{2}\left(u^{-}\right)^{2}+\cdots \text { is the local } \\
& \text { unstable manifold expressed as the graph of a function } \\
& \text { up to second order [1 mark]. Then, if we ignore } \\
& \text { all terms in } u_{n}^{-} \text {of degree three or more, } \\
& u_{n+1}^{+}=\frac{1}{2} u_{n}^{+}+\left(u_{n}^{-}\right)^{2}+\cdots \quad \text { using part (c) } \\
& =\left(\frac{1}{2} a_{2}+1\right)\left(u_{n}^{-}\right)^{2}+\cdots \quad \text { using } u_{n}^{+}=a_{2}\left(u_{n}^{-}\right)^{2}+\cdots \\
& \text { while, } \\
& u_{n+1}^{+}=a_{2}\left(u_{n+1}^{-}\right)^{2}+\cdots \quad \text { using invariance } \\
& =4 a_{2}\left(u_{n}^{-}\right)^{2}+\cdots \quad \text { using part }(\mathrm{c}) . \\
& \text { We equate coefficients and deduce } \\
& a_{2}=\frac{2}{7} \tag{4marks}\\
& \text { Thus, } \\
& W_{l o c}^{-}=\left\{\left(2\left(u^{-}\right)^{2} / 7, u^{-}\right)\right\} \\
& \text {[1 mark]. }
\end{align*}
$$

As above, assume that $u^{-}=h\left(u^{+}\right)=b_{2}\left(u^{+}\right)^{2}+\cdots$ is the local stable manifold expressed as the graph of
a function up to second order [1 mark]. Then, if we ignore all terms in u_{n}^{+}of degree three or more,

$$
\begin{array}{rlr}
u_{n+1}^{-} & =2 u_{n}^{-}-\frac{485}{27}\left(u_{n}^{+}\right)^{2}+\cdots & \text { using part }(\mathrm{c}) \\
& =\left(2 b_{2}-\frac{485}{27}\right)\left(u_{n}^{+}\right)^{2}+\cdots \quad \text { using } u_{n}^{-}=b_{2}\left(u_{n}^{+}\right)^{2}+\cdots
\end{array}
$$

while,

$$
u_{n+1}^{-}=b_{2}\left(u_{n+1}^{+}\right)^{2}+\cdots \quad \text { using invariance }
$$

$$
=\frac{1}{4} b_{2}\left(u_{n}^{+}\right)^{2}+\cdots \quad \text { using part }(\mathrm{c})
$$

We equate coefficients and deduce

$$
b_{2}=\frac{485}{27} \times \frac{4}{7}=\frac{1940}{189}
$$

[2 marks].
Thus,
$W_{\text {loc }}^{+}=\left\{\left(u^{+}, 1940\left(u^{+}\right)^{2} / 189\right)\right\} \quad[\mathbf{1}$ mark $]$.
(e)

Figure 1. The stable and unstable manifolds of (DS). $E^{ \pm}=u^{ \pm}$-axis.
(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].
(iii) Correct arrows [1 mark].

