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Dynamical Systems

(1) Define a map f : R2 → R2 by

f(x) =

[
α− βu− v2,

v

]
, where x =

[
v
u

]

and α, β ∈ R are parameters. As usual, we define a dynamical
system by

xn+1 = f(xn) (DS)

for n ≥ 0.

(a) Determine the set A = {(α, β) ∈ R2 : f has at least one
fixed point }. /5

(b) Determine the stability of the linearized dynamical system
at each fixed point when α = 4, β = 2. Are these fixed
points sinks, sources, saddles or centres? /5

(c) When α = 0 and β = 2, the origin [0, 0] is a fixed point.
Does the linearized system determine the stability of this
fixed point? Explain. /5

(d) Continuing with α = 0, β = 2, introduce the complex vari-
able z = γu+ v and transform (DS) into the system

zn+1 = λzn + az2n + bznz̄n + cz̄2n (CDS)

Determine the constants γ, λ, a, b and c. /5

(e) Determine the stability of the fixed point z = 0 for the
dynamical system

zn+1 = λzn + (−3 + 4i)z2nz̄n

where z ∈ C, λ = exp

(
iπ

7

)
and i2 = −1. /5

Solution.

(a) f has a fived point at (v, u) iff v = α−βu−v2 and

u = v [2 marks] iff u = v and v2+(1+β)v−α = 0 [1
mark]. There are real f.p.s iff the discriminant

1

2

∆2 = (1+β)2+4α is non-negative [1 mark]. Therefore,

α ≥ −1

4
(1 + β)2, β ∈ R. [1 mark]

(b) When α = 4, β = 2, the fixed points are u = v =
1,−4 [1 mark]. The linearized map is

df[v,u] =

[
−2v −β
1 0

]
. [1 mark]

We get

df[−4,−4] =

[
8 −2
1 0

]
, df[1,1] =

[
−2 −2
1 0

]
. [1 mark]

In both cases, the determinant is 2 > 1 so the fixed

point is unstable [1 mark]. In fact, in the first

case, the eigenvalues are 4±
√
14 so [−4,−4] is a

saddle; in the second case, the eigenvalues are −1±
i, so [1, 1] is a spiral source. [1 mark].

(c) The linearized map where α = 0, β = 2 at x = [0, 0]
is

df[0,0] =

[
0 −2
1 0

]
[1 mark]

which has eigenvalues ±i
√
2 [1 mark]. The eigenvalues

have modulus large than unity [1 mark], so the linearized

system does determine the stability of the nonlinear

system: it is an spiral source [2 marks].
(d) The λ = i-th eigenvector of A = dfT[0,0] is

t =

[
1

i
√
2

]
. [1 mark]

This gives z = 〈t,x〉 = v + i
√
2u, γ = λ = i and√

2u = ℑz, v = ℜz. [1 mark].

zn+1 = vn+1 + i
√
2un+1, [1 mark]

= −2un − v2n + i
√
2vn,

= i
√
2(vn + i

√
2un)− v2n,

= i
√
2zn −

1

4
(z2n + 2znz̄n + z̄2n). [1 mark]

This gives the result

λ = i
√
2, a = c = −1

4
, b = −1

2
. [1 mark]
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Remark.
Many of you expected the question/solution to be of

the following form:

(c’) The linearized map where α = 0, β = 1 at x = [0, 0]
is

df[0,0] =

[
0 −1
1 0

]
[1 mark]

which has eigenvalues ±i [1 mark]. The eigenvalues

have unit modulus [1 mark], so the linearized system

does not determine the stability of the nonlinear

system [2 marks].
(d’) The λ = i-th eigenvector of A = dfT[0,0] is

t =

[
1
i

]
. [1 mark]

This gives the inner product z = 〈t,x〉 = v + iu,
γ = λ = i and u = ℑz, v = ℜz. [1 mark].

zn+1 = vn+1 + iun+1, [1 mark]

= −un − v2n + ivn,

= i(vn + iun)− v2n,

= izn −
1

4
(z2n + 2znz̄n + z̄2n). [1 mark]

This gives the result

λ = i, a = c = −1
4
, b = −1

2
. [1 mark]

End of Remark.
(e) We know that

|zn+1|2 = zn+1z̄n+1 = (λzn + cz2nz̄n)(λ̄z̄n + c̄z̄2nzn)

= |zn|2 + (cλ̄+ c̄λ)z2nz̄
2
n + |c|2|zn|6

= |zn|2 + 2ℜ(cλ̄)|zn|4 + |c|2|zn|6 [2 marks]

where c = −3+4i. By the hypothesis that λ = exp

(
iπ

7

)
,

we see that the real part of cλ̄ is negative (ℜ(cλ̄) ∼=
−0.967) [1 mark]. Therefore, for small non-zero

zn, we have

|zn+1|2 < |zn|2. [1 mark]

This proves that z = 0 is a stable fixed point [1
mark].

4

(2) Let Σ = ZN
2 = {(ω0, ω1, . . .) : ωj ∈ {0, 1} ∀j ≥ 0}.

(a) Define the shift map σ : Σ → Σ. /5

(b) Shows that σ has exactly 2n periodic points of period n for
each n ≥ 1. /5

(c) Compute the number of prime period n points for σ when
n = 2, 3 and 6. /5

(d) Let

d(ω, η) =
∞∑

n=0

|ωn − ηn|
2n+1

∀ω, η ∈ Σ.

You may use the fact, without proving it, that (Σ, d) is a
metric space.
For each ǫ > 0 and ω ∈ Σ, define the ball

Bǫ(ω) = {η ∈ Σ : d(ω, η) < ǫ}
and, for N ∈ N, the cylinder

CN(ω) = {η ∈ Σ : η0 = ω0, · · · , ηN = ωN}.
Prove: Let N be the floor of log2(ǫ

−1)− 1. Then Bǫ(ω) is

contained in CN(ω) and Bǫ(ω) contains CN+1(ω). /5

(e) Show that σ has a dense orbit. /4

(f) Does σ have sensitive dependence on initial conditions?
Explain. /1

Solution.

(a) For each ω = (ω0, ω1, . . .) ∈ Σ [2 marks], we define

σ(ω)k = ωk+1 ∀k ≥ 0, [3 marks].

(b) Let s be a word in Z2 of length n. The infinite sequence

ω = s ·s · · · (s concatenated with itself infinitely

many times) lies in Σ, and σn(ω) = ·s · · · = s · · · =
ω, so ω is a periodic point of period n. This proves

there are at least 2n periodic points of period n,
since there are 2n such words [3 marks].
On the other hand, σn((ω0, ω1, . . .)) = (ωn, ωn+1, . . .) so

ω is a fixed point iff ωk = ωk+n for all k. Therefore,
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the binary word s = ω0, ω1, . . . , ωn−1 determines the

periodic point ω = s·s · · · . This shows that there

are at most 2n period-n periodic points [2 marks].
(c) Let Pn be the number of period-n points and let pn

be the number of prime period-n points. We know that

pn = Pn −
∑

d|n,d<n

pd, Pn = 2n [3 marks].

Thus

p1 = 21 p2 = 22 − 21 = 2

p3 = 23 − 21 = 6 p6 = 26 − 6− 2− 2 = 54 [2 marks].

(d) Let ǫ > 0 and ω ∈ Σ be given. If η ∈ Bǫ(ω), then

d(ω, η) < ǫ ⇐⇒
∞∑

n=0

|ωn − ηn|
2n+1

< ǫ

which implies that for all n

|ωn − ηn|
2n+1

< ǫ =⇒ ωn = ηn ∀n s.t. 2−n−1 ≥ ǫ.

If we let N be the floor of log2(ǫ
−1)− 1, then we

arrive at

η ∈ Bǫ(ω) =⇒ ω0 = η0, . . . , ωN = ηN .

Thus η ∈ CN(ω) [3 marks].
On the other hand, if η ∈ CN+1(ω), then

d(ω, η) =
∑

n=N+2

|ωn − ηn|
2n+1

≤ 2−N−2
∑

n=0

1

2n+1
= 2−N−2 < ǫ.

Thus η ∈ Bǫ(ω) [2 marks].
(e) Let ω ∈ Σ be constructed as follows: let sk be the

binary word obtained by concatenating all binary words

of the fixed length k for k ≥ 1. Let ω = s1·s2 · · ·
be the concatenation of all these words [2 marks].
We claim that the orbit of ω is dense. Indeed, let

η ∈ Σ and ǫ > 0 be given. Let N be defined as

in the previous question. We want to show that there

is an n such that σn(ω) ∈ Bǫ(η), or, from above, that

σn(ω) ∈ CN+1(η). The binary word η0, · · · , ηN+1 occurs

in sN+2 and hence in ω as some subsequence ωn, · · · , ωn+N+1

for some n. This proves that the orbit is dense since

η and ǫ > 0 were arbitrary [2 marks].
(f) Yes, the construction of the previous question is

easily adapted to prove this [1 mark].
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(3) Let G(x) = 6 sin(πx) for x ∈ [0, 1].

(a) Show that there are two subintervals I0 = [0, a] and I1 =
[b, 1] of I = [0, 1] such that G−1(I) = I0 ∪ I1. /2

(b) G has two fixed points in I. Indicate their stability. /2

(c) Let Λ = {x ∈ I : ∀k ≥ 0, Gk(x) ∈ I }. Describe Λ in
terms of the sets I0 and I1. /1

(d) Define an itinerary map, h, for G|Λ. /1

(e) Show that the itinerary map is 1-1 and onto. [Indicate
which, if any, theorems you use in the proof.] /5

(f) Show that the itinerary map h conjugates G|Λ with the
shift map σ : ZN

2 → ZN
2 . /3

(g) How many period-3 points does G have? How many prime
period-6 points? /3

(h) The map Fλ(x) = −λ arctan(x) undergoes what type of
bifurcation as λ passes through 1 at x = 0? Explain why
you know the type of bifurcation. /5

(i) Let Hµ(x) = x + x2 − µ. Determine the fixed point(s) of
this map in terms of µ. What type of bifurcation does this
map undergo? /3

Solution.

(a) Since G is continuous on [0, 1/2] and G(0) = 0, G(1/2) =
6, the intermediate value theorem says that there

exists a ∈ (0, 1/2) s.t. G(a) = 1. Since G is increasing

on [0, 1/2], a is unique. Since G is symmetric about

1/2, the point b exists, is unique and equals 1−
a. [ a = π−1 arcsin(1/6) gets only one mark. ]

(b) We know that the fixed points of G lie in I0 ∪ I1
since they stay in I under an iteration [1 mark].
We know that G′(x) = 6π cos(πx), which is decreasing

on [0, 1/2] so G′(x) ≥ 6π cos(πa) = 6π
√
35/6 > 1 on
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I0. By symmetry, |G′(x)| ≥ π
√
35 on I0∪I1. Therefore,

the fixed points are repellers [1 mark].
(c) Λ is the set of points in I0∪I1 whose positive orbit

lies in I0 ∪ I1 [1 mark].
(d) Given x ∈ Λ, define the itinerary map h(x) to equal

ω ∈ Σ iff Gk(x) ∈ Iωk
for all k ≥ 0 [1 mark].

Since I0 ∩ I1 = ∅, this is well-defined.

(e) Proof that h is 1-1 and onto. For each n ≥ 0 and

ω ∈ Σ, define

Iω0,...,ωn = {x ∈ I : Gk(x) ∈ Iωk
∀k = 0 . . . n }. [1 mark]

Let µ = π
√
35, which is a lower bound for |G′| on

I0 ∪ I1.
CLAIM. Iω0,...,ωn is an interval in Iω0 of length ≤ µ−n

for all ω, n [1 mark].
CHECK. If n = 0, then the claim follows since I0,1
is an interval of length at most 1 = µ−0. Therefore,

assume the claim is true for ≤ n−1 and all ω. The

set Iω1,...,ωn is therefore an interval in Iω1 of length

≤ µ−n+1. The set Iω0,...,ωn is therefore the intersection

of G−1(Iω1,...,ωn) with Iω0. Since G|Iω0 is a homeomorphism,

we have proven that Iω0,...,ωn is an interval. To prove

the claim about the length, if x, y ∈ Iω0,...,ωn, then

|G(x) − G(y)| ≤ µ−n+1. On the other hand, the MVT

plus the lower bound for |G′| gives |G(x)−G(y)| ≥
µ|x−y|. Putting the two inequalities together shows

that |x−y| ≤ µ−n, which proves the claim [2 marks].
CLAIM. h is onto and 1-1.

CHECK. For each ω ∈ Σ, the sets are nested: Iω0 ⊃
Iω0,ω1 ⊃ · · · Iω0,...,ωn ⊃ · · · . Since each is compact,

their intersection is non-empty. This proves that

h is onto. Since the diameter goes to zero, there

is a unique point x in their intersection. This proves

h is 1-1 [1 mark].
(f) Let x ∈ Λ and let ω = h(x). Then

h(x) = ω ⇐⇒ ∀k ≥ 0 : F k(x) ∈ Iωk
[1 mark]

=⇒ ∀k ≥ 0 : F k(F (x)) ∈ Iωk+1

=⇒ ∀k ≥ 0 : F k(F (x)) ∈ Iσ(ω)k [1 mark]

=⇒ h(F (x)) = σ(ω) = σ(h(x)).

Since x was arbitrary, this proves that h conjugates

F |Λ and σ [1 mark].
(g) Since any periodic point of G must lie in Λ, and

h is a conjugacy, it suffices to count periodic points
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of the shift map [2 marks]. We have counted these

already: there are 6 prime period-3 and 54 prime

period-6 points [1 mark].
(h) We see that F ′(0) = −λ, F (0) = 0 so as λ passes

through 1 we expect a flip (period-doubling) bifurcation

[3 marks]. Indeed, F ′(x) = −λ/(1 + x2), F ′′(x) =
2xλ(1 + x2)−2 and F ′′′(0) = 2λ = 2 when λ = 1, while

∂(F ◦ F )′

∂λ

∣∣∣∣
λ=1,x=0

=
∂

∂λ

∣∣∣∣
λ=1,x=0

F ′(F (x)) · F ′(x)

=
∂

∂λ

∣∣∣∣
λ=1,x=0

λ2

(1 + F 2)(1 + x2)

=
2λ

(1 + F 2)(1 + x2)
− 2F 2

(1 + F 2)2(1 + x2)

∣∣∣∣
λ=1,x=0

= 2.

This verifies the hypotheses of the period-doubling

bifurcation theorem [2 marks].
Remark.
Many students computed the Schwartzian derivative

of F at λ = 1, x = 0:

Ds{F}(0) = F ′′′(0)

F ′(0)
− 3

2

[
F ′′(0)

F ′(0)

]2
= −2.

They concluded that there was a supercritical flip

bifurcation. This was awarded [2 marks], also.

End of Remark.
(i) The fixed points of Hµ satisfy x = x+x2−µ, i.e.

x = ±√
µ for µ ≥ 0 [2 marks]. This is the standard

example of a saddle-node (or blue-sky) bifurcation

[1 mark].
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(4) Define a dynamical system on R2 by

xn+1 = 2xn − 4yn + y2n
yn+1 = 1

2
yn + x2

n.
(DS)

(a) Show that the origin is a hyperbolic fixed point of (DS).
/2

(b) Let v+ =

[
∗
1

]
(resp. v− =

[
1
∗

]
) span the stable (resp.

unstable) subspace of (0, 0). Find v+ and v−. /3

(c) Introduce a system of coordinates (u+, u−) adapted to the
stable and unstable subspaces. Express (DS) in the form

u+
n+1 = au+

n + p0(u
+
n )

2 + p1u
+
nu

−
n + p2(u

−
n )

2

u−
n+1 = bu−

n + q0(u
+
n )

2 + q1u
+
nu

−
n + q2(u

−
n )

2

Determine the coefficients a, b, pi, qj for i, j = 0, 1, 2. /6

(d) Find the Maclaurin series for W+
loc and W−

loc, up to second
order, in the coordinates (u+, u−). /10

(e) Sketch the stable and unstable subspaces and manifolds in
the (u+, u−) coordinates. Indicate how orbits beginning on
the manifolds behave and how nearby orbits behave. /4

Solution.

(a) The linearization at [0, 0] has the matrix
[
2 −4
0 1/2

]
[1 mark]

which has eigenvalues 2, 1/2 [1 mark].
(b) The unstable eigenvector is v− = [1, 0]T [1 mark]

while the stable eigenvector v+ solves
[
3/2 −4
0 0

]
× v+ =

[
0
0

]
=⇒ v+ =

[
8/3
1

]
[2 marks].

(c) We have that
[
x
y

]
= u+v+ + u−v− =

[
u+8/3 + u−

u+

]
[1 mark]
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so,

[
u−

u+

]
=

[
x− 8y/3

y

]
[1 mark]

(DS) is transformed into
[
u+
n+1

u−
n+1

]
=

[
yn+1

xn − 8yn+1/3

]
[1 mark]

=

[
yn/2 + x2

n

2(xn − 8yn/3) + y2n − 8x2
n/3

]
[1 mark]

=

[
u+
n /2 + (u−

n + 8u+
n /3)

2

2u−
n + (u+

n )
2 − 8

3
× (u−

n + 8u+
n /3)

2

]

=

[
u+
n /2 + (u−

n )
2 + 16u−

nu
+
n /3 + 64(u+

n )
2/9

2u−
n − 8(u−

n )
2/3− 128u−

nu
+
n /9− 485(u+

n )
2/27

]
.

Thus,

a = 1/2, p0 = 64/9, p1 = 16/3, p2 = 1,
b = 2, q0 = −485/27, q1 = −128/9, q2 = −8/3

[2 marks].

(d) Assume that u+ = g(u−) = a2(u
−)2 + · · · is the local

unstable manifold expressed as the graph of a function

up to second order [1 mark]. Then, if we ignore

all terms in u−
n of degree three or more,

u+
n+1 =

1

2
u+
n + (u−

n )
2 + · · · using part (c)

= (
1

2
a2 + 1)(u−

n )
2 + · · · using u+

n = a2(u
−
n )

2 + · · ·

while,

u+
n+1 = a2(u

−
n+1)

2 + · · · using invariance

= 4a2(u
−
n )

2 + · · · using part (c).

We equate coefficients and deduce

a2 =
2

7
[4 marks].

Thus,

W−
loc = {(2(u−)2/7, u−)} [1 mark].

As above, assume that u− = h(u+) = b2(u
+)2 + · · · is

the local stable manifold expressed as the graph of
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a function up to second order [1 mark]. Then, if

we ignore all terms in u+
n of degree three or more,

u−
n+1 = 2u−

n − 485

27
(u+

n )
2 + · · · using part (c)

= (2b2 −
485

27
)(u+

n )
2 + · · · using u−

n = b2(u
+
n )

2 + · · ·

while,

u−
n+1 = b2(u

+
n+1)

2 + · · · using invariance

=
1

4
b2(u

+
n )

2 + · · · using part (c).

We equate coefficients and deduce

b2 =
485

27
× 4

7
=

1940

189
[2 marks].

Thus,

W+
loc = {(u+, 1940(u+)2/189)} [1 mark].

(e)

K0.04 K0.02 0 0.02 0.04

K0.02

K0.01

0.01

0.02

u−

u+

W−
locW+

loc

Figure 1. The stable and unstable manifolds of (DS).
E± = u±-axis.

(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].

(iii) Correct arrows [1 mark].


