Uo01875 May 2008 MAT-4-DSy
Dynamical Systems

(1) Define a map f : R? — R? by

By 2
f(x) = [a fu—wv ’} , where x = {U}
v u
and «, f € R are parameters. As usual, we define a dynamical
system by
Xnt1 = f(xn) (DS)
for n > 0.

(a) Determine the set A = {(a,3) € R? : f has at least one
fixed point }. /5

(b) Determine the stability of the linearized dynamical system
at each fixed point when o« = 4,8 = 2. Are these fixed
points sinks, sources, saddles or centres? /5

(¢c) When o = 0 and S = 2, the origin [0,0] is a fixed point.
Does the linearized system determine the stability of this
fixed point? Explain. /5

(d) Continuing with o = 0, § = 2, introduce the complex vari-
able z = yu + v and transform (DS) into the system

Zng1 = Aop + 22 + 02,5, + 22 (CDS)

Determine the constants v, A, a,b and c. /5

(e) Determine the stability of the fixed point z = 0 for the
dynamical system
Zng1 = Az + (=3 + 40)227,

s

whcrcze(C,)\:cxp(7) and 2 = —1. /5

Solution.

(a) f has a fived point at (v,u) iff v=a—fu—v? and
w=v [2 marks] iff u=v and vV*+(1+B)v—a=0 [1
mark]|. There are real f.p.s iff the discriminant

1

A? = (14+8)*+4a is non-negative [1 mark]. Therefore,
1
a> —1(1 +8)%, B e€R. [1 mark]

(b) When a = 4,8 = 2, the fixed points are u = v =
1,—4 [1 mark]. The linearized map is

df[v.u] = |: 712U 70/6 :| : [1 mark]
We get
8 =2 -2 =2
df[—/i‘—/i] = |: 1 0 :| s df[l,l] = |: 1 0 :| . [1 Inark]

In both cases, the determinant is 2 > 1 so the fixed
point is unstable [1 mark]. In fact, in the first
case, the eigenvalues are 44+/14 so [—4,—4] is a
saddle; in the second case, the eigenvalues are —1+

i, so [1,1] is a spiral source. [1 mark].
(c) The linearized map where aw = 0,8 = 2 at x = [0,0]
is
0 -2
dfjo,0 = { 1 0 } [1 mark]

which has eigenvalues +iv/2 [1 mark]. The eigenvalues

have modulus large than unity [1 mark], so the linearized

system does determine the stability of the nonlinear
system: it is an spiral source [2 marks].
(d) The A =i-th eigenvector of A= df['go] is

t:[i\l/i] [1 mark]
This gives z = (t,x) = v+ iv2u, v = A = i and
V2u=S2, v=Rz. [1 mark].
Zngl = Upgt + 0V 21, [1 mark]
= —2u, — V2 + V20,
= iV2(v, + iV 2u,) — 02,

1 .
=iV2z, — Z(Z’Zl + 22,7, + 22). [1 mark]

This gives the result

A= V2, a=c=-31 b=-1 [1 mark]



Remark.
Many of you expected the question/solution to be of
the following form:

(c’) The linearized map where a = 0,8 =1 at x = [0,0]
is

1 0

which has eigenvalues +i [l mark]. The eigenvalues
have unit modulus [1 mark], so the linearized system
does not determine the stability of the nonlinear
system [2 marks].

(d’) The A\ =i-th eigenvector of A= df[ﬁu] is

dfjo,0 = { 0 -1 } [1 mark]

t:{i}. [1 mark]
This gives the inner product z = (t,x) = v + iu,
y=A=i¢and u=Sz, v=Rz. [1 mark].

Zpt1 = Uny1 + Wny1, [1 mark]
2 .
= —Up — Uy, + 10y,

= i(v, +iuy,) — 02,

1
=iz, — Z(z,% + 22,7, + 22). [1 mark]

This gives the result

A =i a=c=-% b=-1 [1 mark]

End of Remark.
(e) We know that
|2n41]® = Zns1Zns1 = Nzp + 222,) (A2, + C222,)
= |2al* + (A + 2N 232 + [l

= |zn)? + 2R(cN) | 2a]* + |c]?|20]° [2 marks]

. i
where ¢ = —3+44¢. By the hypothesis that A =exp (7) ,

we see that the real part of c)\ is negative (R(c))
—0.967) [1 mark]. Therefore, for small non-zero
Zn, we have

|2ng1|® < |2n)? [1 mark]

This proves that z =0 is a stable fixed point [1
mark].

(2) Let ¥ =Z5 = {(wo,wr,...) : w; €{0,1} Vj > 0}.
(a) Define the shift map o : ¥ — X. /5

(b) Shows that o has exactly 2" periodic points of period n for
each n > 1. /5

(¢) Compute the number of prime period n points for o when

n=2,3 and 6. /5
(d) Let
> |wn - nn‘
d(w,n) = Z ST Yw,n € X.
n=0

You may use the fact, without proving it, that (3,d) is a
metric space.
For each € > 0 and w € X, define the ball

B(w)={nex : dwn) <e}
and, for N € N, the cylinder

Cn(w)={n€eX : m=uwo, -,y =wn}
Prove: Let N be the floor of logy(e™) — 1. Then B.(w) is

contained in Cy(w) and B(w) contains Ch1(w). /5
(e) Show that o has a dense orbit. /4

(f) Does o have sensitive dependence on initial conditions?
Explain. /1

Solution.

(a) For each w = (wg,ws,...) €L [2 marks], we define

o(w)k = Wit vk > 0, [3 marks].

(b) Let s be a word in Z, of length n. The infinite sequence

w=s5-5--- (s concatenated with itself infinitely
many times) lies in ¥, and o"(w) = s+ = §-++ =

w, so w is a periodic point of period n. This proves

there are at least 2" periodic points of period n,
since there are 2" such words [3 marks].
On the other hand, o"((wo,wi,...)) = (Wn,Wnt1,...) SO

w is a fixed point iff wjp = wyy, for all k. Therefore,
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the binary word s = wp,w;,...,wy,—1 determines the
periodic point w = s-s---. This shows that there
are at most 2" period-n periodic points [2 marks].

(c) Let P, be the number of period-n points and let p,
be the number of prime period-n points. We know that
Pn=PFn— Z P, pP,=2" [3 marks].
d|n,d<n
Thus
p=2" pr=22—2' =2

p3=2-2'=6 ps=2°-6-2-2=54  [2 marks]

(d) Let € >0 and w € ¥ be given. If n€ B (w), then
oo
‘wn - nn|
d(wm) <€ <~ Z W <€
n=0
which implies that for all n
Wp — 1N e
%<6 = Wp =1, Vnst 27"l >e
If we let N be the floor of logy(¢7!)—1, then we
arrive at
1 € Be(w) == Wo = 1o, -+, WN = NN

Thus 7 € Cy(w) [3 marks].
On the other hand, if 7€ Cyiy(w), then

|wn — 70l —N-2 1 —-N-2
d(w777) = Z on+1 <2 Z on+1 =2 <€
n=0

(e)

)

n=N+2
Thus 7 € B(w) [2 marks].
Let w € X be constructed as follows: let s, be the
binary word obtained by concatenating all binary words
of the fixed length k for £k >1. Let w=s5;-52---
be the concatenation of all these words [2 marks].
We claim that the orbit of w is dense. Indeed, let
7 € ¥ and € > 0 be given. Let N be defined as
in the previous question. We want to show that there
is an n such that ¢"(w) € Bc(n), or, from above, that
0"(w) € Cn41(n). The binary word 7, - ,7N41 OCCUrs
in sy42 and hence in w as some subsequence Wy, ,WptN+1
for some n. This proves that the orbit is dense since
n and € >0 were arbitrary [2 marks].
Yes, the construction of the previous question is
easily adapted to prove this [1 mark].

(3) Let G(z) = 6sin(rz) for z € [0, 1].

(a) Show that there are two subintervals Iy = [0,a] and I, =
[b,1] of I = [0,1] such that G=*(I) = Iy U I;. /2

(b) G has two fixed points in I. Indicate their stability. /2

(c)Let A={x €l : Vk >0, G¥(z) € I }. Describe A in
terms of the sets I, and I;. /1

(d) Define an itinerary map, h, for G|A. /1

(e) Show that the itinerary map is 1-1 and onto. [Indicate
which, if any, theorems you use in the proof.] /5

(f) Show that the itinerary map h conjugates G|A with the
shift map o : Z5 — Z§. /3

(g) How many period-3 points does G have? How many prime

period-6 points? /3
(h) The map Fy(xz) = —Aarctan(z) undergoes what type of
bifurcation as A passes through 1 at x = 07 Explain why
you know the type of bifurcation. /5

(i) Let H,(z) = x + 2*> — p. Determine the fixed point(s) of
this map in terms of p. What type of bifurcation does this
map undergo? /3

Solution.

(a) Since G is continuous on [0,1/2] and G(0) =0,G(1/2) =

6, the intermediate value theorem says that there

exists a € (0,1/2) s.t. G(a)=1. Since G is increasing

on [0,1/2], a is unique. Since G is symmetric about
1/2, the point b exists, is unique and equals 1—
a. [ a=n"larcsin(1/6) gets only one mark. ]

(b) We know that the fixed points of G lie in Iy U [
since they stay in I under an iteration [1 mark].
We know that G'(z) = 6m cos(mz), which is decreasing
on [0,1/2] so G'(z) > 6mcos(ma) = 67/35/6 > 1 on



(c)

(d)

(e)

Iwu,m,Wn

(£

7

Iy. By symmetry, |G'(z)] > 7135 on IyUIl;. Therefore,
the fixed points are repellers [1 mark].

A is the set of points in [oUI; whose positive orbit
lies in [yUL; [1 mark].

Given z € A, define the itinerary map h(z) to equal
w € X iff G¥) € I, for all k > 0 [1 mark].
Since IyNI; =0, this is well-defined.

Proof that h is 1-1 and onto. For each n >0 and

w € XY, define

={zecl : G*x)el, Vk=0...n }. [1 mark]

Let pu = w35, which is a lower bound for |G'| on
[Oull.

CLAIM. I, ., is an interval in I, of length < p™
for all w,n [1 mark].

CHECK. If n =0, then the claim follows since Iy

is an interval of length at most 1:u‘0. Therefore,
assume the claim is true for <mn—1 and all w. The
set I, ., is therefore an interval in I, of length

< ,u’"’“. The set I, .., is therefore the intersection
of G (1, w,) with I, . Since G|l,, is a homeomorphism,
we have proven that I, .., is an interval. To prove
the claim about the length, if z,y € [wo,.»-,wn’ then

|G(z) — G(y)] < p~™*!. On the other hand, the MVT

plus the lower bound for |G'| gives |G(z)—G(y)| >
p|z—y|. Putting the two inequalities together shows
that |z—y| < u™", which proves the claim [2 marks].
CLAIM. h is onto and 1-1.

CHECK. For each w € X, the sets are nested: I, D
Logwr D 1oy won DO ---. Since each is compact,
their intersection is non-empty. This proves that

h is onto. Since the diameter goes to zero, there

is a unique point x in their intersection. This proves
h is 1-1 [1 mark].

Let z € A and let w=h(z). Then

h(z)=w <= Vk>0: Ff2)el, (1 mark]

(g)

)
= Vk>0: F¥F(2))€L,,,
= Vk>0: F"F (@))€ L, [1 mark]
= W(F(2)) =o(w) =a(h(x)).
Since = was arbitrary, this proves that h conjugates
F|A and ¢ [1 mark].
Since any periodic point of G must lie in A, and
h is a conjugacy, it suffices to count periodic points

A(FoFY

of the shift map [2 marks]. We have counted these
already: there are 6 prime period-3 and 54 prime
period-6 points [1 mark].

(h) We see that F'(0) = —\, F(0) = 0 so as \ passes

through 1 we expect a flip (period-doubling) bifurcation

[3 marks]. Indeed, F'(z) = —A\/(1+2?%), F'(z) =
22\ (14 2%)7% and F"”(0) =2\ =2 when A =1, while
0
)
0
O\

F'(F(z)) - F'(z)

A=1,2=0

oA A=1,2=0
)\2
r=tamo (L F2)(1 4 22)
2\ 2F?

AP +a?) (L P22+ a?) |\,
=2.

This verifies the hypotheses of the period-doubling
bifurcation theorem [2 marks]|.

Remark.

Many students computed the Schwartzian derivative
of Flat A=1,2=0:

" 7 2
DAFYO = i) ~ 3 | )| =2

F'(0) 2 [ F'(0)
They concluded that there was a supercritical flip
bifurcation. This was awarded [2 marks|, also.
End of Remark.

(i) The fixed points of H, satisfy r=x+2’—p, i.e.

r =%/ for 4 >0 [2 marks]. This is the standard
example of a saddle-node (or blue-sky) bifurcation
[1 mark].




(4) Define a dynamical system on R? by

Tpp1 = 23, — 4y, + 32 DS
Unil = 3Yn+Th (D3)

(a) Show that the origin is a hyperbolic fixed point of (DS).

/2

(b) Let vy = (resp. v_ = {i}) span the stable (resp.

*
1
unstable) subspace of (0,0). Find v; and v_. /3

(¢) Introduce a system of coordinates (u*,u™) adapted to the
stable and unstable subspaces. Express (DS) in the form
ut = aw! + po(u)? + prufu, + pa(uy,)?

Uy = by, + qo(u))® + quuuy, + ga(uy,)?

Determine the coefficients a, b, p;, ¢; for i,j =0,1,2. /6

(d) Find the Maclaurin series for W}, and W, up to second

order, in the coordinates (ut,u™). /10

(e) Sketch the stable and unstable subspaces and manifolds in
the (u*,u™) coordinates. Indicate how orbits beginning on
the manifolds behave and how nearby orbits behave. /4

Solution.

(a) The linearization at [0,0] has the matrix

2 —4
{0 1/2} [1 mark]
which has eigenvalues 2,1/2 [1 mark].
(b) The unstable eigenvector is v_ = [1,0]7 [1 mark]
while the stable eigenvector v, solves
3/2 -4 o [8/3
{0 O}Xv*'_{()} = V+—|:1:| [2 marks|.
(c) We have that
+ .
{ﬂ =utvytuv. = [u 8/5++u } [1 mark]

10
so,
u | |z—8y/3
Lﬁ} = { y } [1 mark]
(DS) is transformed into
N _
Unyr| _ Yn+1
[u;l} I ES 78yn+1/3:| [1 mark]
N Yn/2 + 22
T 2(zn — 8yn/3) +up — 8$i/3:| [1 mark]

u /2 + (uy + 8uf /3)?
|20, + (u)? = § % (uy, + 8u;7 /3)°

wlf /2 + (u;)? + 16u; /3 + 64(u;)?/9
| 2u,, — 8(u,)?/3 — 128uy, ! /9 — 485(w))? /27|

Thus,

a:1/2, ]9():64/97 p1:16/37 p2:17
b=2, qo=—485/27, q = —128/9, g, = —8/3

(d) Assume that u™ = g(u~) = as(u~)?+--- is the local

unstable manifold expressed as the graph of a function

up to second order [1 mark]. Then, if we ignore
all terms in u, of degree three or more,

Upiy = %U:{ + (uy) A+ using part (c)

:(%a2+1)(u;)2+-~- using u = ag(u;)? + - -
while,

uh = @2(Uﬁ+1)2 + - using invariance

= das(uy)* + - - using part (c).

We equate coefficients and deduce

2
as = - [4 marks].
7
Thus,
Wi = {(2(u")?/7,u7)} [1 mark].
As above, assume that u~ = h(u") = by(u™)? +--- is

the local stable manifold expressed as the graph of

[2 marks].
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a function up to second order [1 mark]. Then, if
we ignore all terms in u) of degree three or more,

Upyy = 2, — %(u:)z +oeee using part (c)
= (2by — %)(UI)Q-&- using u;, = by(uf)* +---
while,
Upy1 = b2(“2+1)2 + e using invariance
= %bz(U:)Q +o using part (c).
We equate coefficients and deduce
bZZ%X%:% [2 marks].
Thus,
Wi = {(u",1940(u™)?/189)} [1 mark].
(e)

————
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FIGURE 1. The stable and unstable manifolds of (DS).
E* = y*-axis.

(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].
(iii) Correct arrows [1 mark].



