(1) The Hénon dynamical system in \mathbb{R}^{2} is defined by

$$
\left.\begin{array}{l}
x_{n+1}=a-b y_{n}-x_{n}^{2} \tag{DS}\\
y_{n+1}=x_{n}
\end{array}\right\}
$$

where $a, b \in \mathbb{R}$ are parameters.
(a) For which range of values of the parameters a and b does (DS) have two fixed points?
(b) Determine the stability of the linearized system at each fixed point when $a=$ $3, b=-1$.
(c) When $a=-3 / 4$ and $b=1$, the point $\left(-\frac{1}{2},-\frac{1}{2}\right)$ is a fixed point. Does the linearized system determine the stability of this fixed point?
(d) Continuing with $a=-3 / 4, b=1$, introduce the coordinates $u=x+\frac{1}{2}, v=$ $y+\frac{1}{2}$. (DS) is transformed to

$$
\left.\begin{array}{l}
u_{n+1}=u_{n}-v_{n}-u_{n}^{2} \\
v_{n+1}=u_{n}
\end{array}\right\}
$$

Introduce the complex variable $z=c u+v$ and transform (DS') into the system

$$
\begin{equation*}
z_{n+1}=\lambda z_{n}+\alpha z_{n}^{2}+\beta z_{n} \bar{z}_{n}+\gamma \bar{z}_{n}^{2} \tag{CDS}
\end{equation*}
$$

Determine the constants $c, \lambda, \alpha, \beta$ and γ.
(e) Determine the stability of the fixed point $z=0$ for (CDS). Explain your reasoning.

A helpful formula: $h=\operatorname{Re}\left[\frac{m}{\lambda}+\frac{(2 \lambda-1) \alpha \beta}{\lambda^{2}(\lambda-1)}\right]-\frac{1}{2}|\beta|^{2}-|\gamma|^{2}$.
(2) Let $G(x)=6 x(1-x)$ for $x \in[0,1]$.
(a) Find the subintervals $I_{0}=[0, a]$ and $I_{1}=[b, 1]$ of $I=[0,1]$ such that $G^{-1}(I)=$ $I_{0} \cup I_{1}$.
(b) G has two fixed points in I. Indicate their stability.
(c) Let $\Lambda=\left\{x \in I: \forall k \geq 0, G^{k}(x) \in I\right\}$. Describe Λ in terms of the sets I_{0} and I_{1}.
(d) Let $\Sigma=\left\{\omega=\left(\omega_{0}, \omega_{1}, \ldots,\right): \forall i \geq 0, \omega_{i} \in\{0,1\}\right\}$. Define a metric d on Σ. Prove that the set $U=\left\{\omega \in \Sigma: \omega_{0}=1, \omega_{1}=0\right\}$ open in the topology of (Σ, d).
(e) Define the 1-sided shift map on two symbols, $\sigma: \Sigma \rightarrow \Sigma$.
(f) Define an itinerary map, h, for $G \mid \Lambda$.
(g) Show that the itinerary map is continuous, 1-1 and onto. [Indicate which, if any, theorems you use in the proof.]
(h) How many period-2 points does G have? How many prime period- 8 points?
(3) Define a dynamical system on \mathbb{R}^{2} by

$$
\begin{align*}
& x_{n+1}=2 x_{n}+3 y_{n}-\left(x_{n}-y_{n}\right)^{2} \\
& y_{n+1}=\frac{1}{2} y_{n}+\frac{1}{2}\left(x_{n}-y_{n}\right)^{2} \tag{DS}
\end{align*}
$$

(a) Show that the origin is a hyperbolic fixed point of (DS).
(b) Let $\mathbf{v}_{+}=\binom{*}{1}$ (resp. $\mathbf{v}_{-}=\binom{1}{*}$) span the stable (resp. unstable) subspace of $(0,0)$. Find \mathbf{v}_{+}and \mathbf{v}_{-}.
(c) Introduce a system of coordinates $\left(u^{+}, u^{-}\right)$adapted to the stable and unstable subspaces. Express (DS) in the form

$$
\begin{align*}
& u_{n+1}^{+}=a u_{n}^{+}+p_{0}\left(u_{n}^{+}\right)^{2}+p_{1} u_{n}^{+} u_{n}^{-}+p_{2}\left(u_{n}^{-}\right)^{2} \tag{ADS}\\
& u_{n+1}^{-}=b u_{n}^{-}+q_{0}\left(u_{n}^{+}\right)^{2}+q_{1} u_{n}^{+} u_{n}^{-}+q_{2}\left(u_{n}^{-}\right)^{2}
\end{align*}
$$

Determine the coefficients a, b, p_{i}, q_{j} for $i, j=0,1,2$.
(d) Find the Maclaurin series for $W_{l o c}^{+}$and $W_{l o c}^{-}$, up to second order, in the coordinates $\left(u^{+}, u^{-}\right)$.
(e) Sketch the stable and unstable subspaces and manifolds in the $\left(u^{+}, u^{-}\right)$ coordinates. Indicate how orbits beginning on the manifolds behave, and how nearby orbits behave.
(4) (a) State Sharkovskii's theorem. /5
(b) Let $\mathrm{f}:[0,1] \rightarrow[0,1]$ be a continuous, surjective function whose graph is shown in figure 1. Prove: for each positive integer n, f has a periodic orbit of prime period n.

Figure 1. f: $[0,1] \rightarrow[0,1]$.
(c) Let $x_{n+1}=f_{\mu}\left(x_{n}\right)$ where $f_{\mu}(x)=x+\mu+x^{2}$ for $x, \mu \in \mathbb{R}$.
(i) Find the fixed points of this dynamical system.
(ii) Find the value of μ for which there is a saddle-node bifurcation.
(iii) Find the value of μ for which there is a flip bifurcation. Is it super- or sub-critical?
(iv) Sketch the bifurcation diagram in the ($\mu, x)$ plane.

