U01875

May 2007 Dynamical Systems

(1) The Hénon dynamical system in \mathbb{R}^2 is defined by

$$\begin{array}{l} x_{n+1} = a - by_n - x_n^2, \\ y_{n+1} = x_n \end{array} \right\}$$
 (DS),

where $a, b \in \mathbb{R}$ are parameters.

- (a) For which range of values of the parameters a and b does (DS) have two fixed points? /5
- (b) Determine the stability of the linearized system at each fixed point when a = 3, b = -1. /5
- (c) When a = -3/4 and b = 1, the point $(-\frac{1}{2}, -\frac{1}{2})$ is a fixed point. Does the linearized system determine the stability of this fixed point? /5
- (d) Continuing with a = -3/4, b = 1, introduce the coordinates $u = x + \frac{1}{2}, v = y + \frac{1}{2}$. (DS) is transformed to

$$\begin{array}{lll} u_{n+1} &=& u_n - v_n - u_n^2, \\ v_{n+1} &=& u_n \end{array} \right\}$$
 (DS'),

Introduce the complex variable z = cu + v and transform (DS') into the system

$$z_{n+1} = \lambda z_n + \alpha z_n^2 + \beta z_n \bar{z}_n + \gamma \bar{z}_n^2 \qquad (CDS)$$

Determine the constants $c, \lambda, \alpha, \beta$ and γ . /8

(e) Determine the stability of the fixed point z = 0 for (CDS). Explain your reasoning. /2

A helpful formula:
$$h = \operatorname{Re}\left[\frac{m}{\lambda} + \frac{(2\lambda-1)\alpha\beta}{\lambda^2(\lambda-1)}\right] - \frac{1}{2}|\beta|^2 - |\gamma|^2.$$

Dynamical Systems

- (2) Let G(x) = 6x(1-x) for $x \in [0,1]$.
 - (a) Find the subintervals $I_0 = [0, a]$ and $I_1 = [b, 1]$ of I = [0, 1] such that $G^{-1}(I) = I_0 \cup I_1$.
 - (b) G has two fixed points in I. Indicate their stability. /3
 - (c) Let $\Lambda = \{x \in I : \forall k \ge 0, G^k(x) \in I \}$. Describe Λ in terms of the sets I_0 and I_1 .
 - (d) Let $\Sigma = \{\omega = (\omega_0, \omega_1, \dots,) : \forall i \ge 0, \omega_i \in \{0, 1\} \}$. Define a metric d on Σ . Prove that the set $U = \{\omega \in \Sigma : \omega_0 = 1, \omega_1 = 0\}$ open in the topology of (Σ, d) .
 - (e) Define the 1-sided shift map on two symbols, $\sigma: \Sigma \to \Sigma$. /2
 - (f) Define an itinerary map, h, for $G|\Lambda$. /1
 - (g) Show that the itinerary map is continuous, 1-1 and onto. [Indicate which, if any, theorems you use in the proof.] /7
 - (h) How many period-2 points does G have? How many prime period-8 points? /5

[Please turn over]

Dynamical Systems

(3) Define a dynamical system on \mathbb{R}^2 by

$$\begin{array}{rcl} x_{n+1} &=& 2x_n + 3y_n - (x_n - y_n)^2 \\ y_{n+1} &=& \frac{1}{2}y_n + \frac{1}{2}(x_n - y_n)^2. \end{array} \tag{DS}$$

(a) Show that the origin is a hyperbolic fixed point of (DS). /2

(b) Let
$$\mathbf{v}_{+} = \begin{pmatrix} * \\ 1 \end{pmatrix}$$
 (resp. $\mathbf{v}_{-} = \begin{pmatrix} 1 \\ * \end{pmatrix}$) span the stable (resp. unstable) subspace of $(0,0)$. Find \mathbf{v}_{+} and \mathbf{v}_{-} .

(c) Introduce a system of coordinates (u^+, u^-) adapted to the stable and unstable subspaces. Express (DS) in the form

$$\begin{aligned} u_{n+1}^+ &= a u_n^+ + p_0(u_n^+)^2 + p_1 u_n^+ u_n^- + p_2(u_n^-)^2 \\ u_{n+1}^- &= b u_n^- + q_0(u_n^+)^2 + q_1 u_n^+ u_n^- + q_2(u_n^-)^2 \end{aligned} (ADS).$$

Determine the coefficients a, b, p_i, q_j for i, j = 0, 1, 2.

- (d) Find the Maclaurin series for W_{loc}^+ and W_{loc}^- , up to second order, in the coordinates (u^+, u^-) . /10
- (e) Sketch the stable and unstable subspaces and manifolds in the (u^+, u^-) coordinates. Indicate how orbits beginning on the manifolds behave, and how nearby orbits behave. /5

/5

[Please turn over]

U01875

Dynamical Systems

- (4) (a) State Sharkovskii's theorem.
 - (b) Let $f: [0,1] \rightarrow [0,1]$ be a continuous, surjective function whose graph is shown in figure 1. Prove: for each positive integer n, f has a periodic orbit of prime period n. /8

FIGURE 1. $f: [0,1] \to [0,1]$.

- (c) Let $x_{n+1} = f_{\mu}(x_n)$ where $f_{\mu}(x) = x + \mu + x^2$ for $x, \mu \in \mathbb{R}$.
 - (i) Find the fixed points of this dynamical system. /2
 - (ii) Find the value of μ for which there is a saddle-node bifurcation. /1
 - (iii) Find the value of μ for which there is a flip bifurcation. Is it super- or sub-critical? /6
 - (iv) Sketch the bifurcation diagram in the (μ, x) plane. /3

[End of Paper]

U01875

4

/5