U01875 May 2007 MAT-4-DSy
Dynamical Systems

(1) The Hénon dynamical system in R? is defined by
Tpy1 = a—by, — 12, (DS)
Yn+y1 = Tn ’

where a,b € R are parameters.

(a) For which range of values of the parameters a and b does
(DS) have two fixed points? /5

(b) Determine the stability of the linearized system at each
fixed point when a = 3,0 = —1. /5

(c) When a = —3/4 and b = 1, the point (—2, —1) is a fixed

207 2
point. Does the linearized system determine the stability

of this fixed point? /5

(d) Continuing with @ = —3/4,b = 1, introduce the coordi-
nates u = x + %, v=y+ % (DS) is transformed to

2
Up+1 = Up — Up — Uy, (DS/>
Uny1 = Up ’

Introduce the complex variable z = cu + v and transform
(DS’) into the system

Zni1l = Aon + Q22 + B2nZ, + V22 (CDS)
Determine the constants ¢, A, a, 5 and 7. /8

(e) Determine the stability of the fixed point z = 0 for (CDS).
Explain your reasoning. /2

A helpful formula: h = Re [% + (ié\(_,\l_)%ﬁ] — 3181 = v

Solution.
(a) (DS) has a fixed point at (wz,y) iff z=a— by — 2

and y =z [2 marks] iff y =2 and 2°+(1+b)z—a =
1



0 [1 mark]. There are two distinct f.p.s iff the
discriminant A? = (1+b)*+4a is positive [1 mark].
Therefore,

1
a > _4_1(1+b)2’ beR. [1 mark]

(b) When a = 3,b = —1, the fixed points are x = y =
+v/3 [1 mark]. The linearized map is
—2r —b
df (wy) = [ 1 0 } . [1 mark]
We get

2v/3 1
df(i\/g,i\/g) = [ + 1 0 ] . [1 mark|

The eigenvalues are F(v/3+2) [1 mark]. Thus, the
fixed points are saddles, hence unstable [1 mark].

(c) The linearized map at (—3,—3) is
1 -1
[ 10 } [1 mark]

which has characteristic polynomial A2 — X\ + 1 [1
mark]. The roots are cube roots of —1 -- hence of
unit modulus [1 mark]. Therefore, the linearized
system does not determine the stability of the nonlinear
system [2 marks].

(d) Let g denote the map defined by (DS’). Then dg,
is the matrix in the previous equation [1 mark].

Let A\, )\ be its eigenvalues with )\ = %—l—z\/?g The
A-th eigenvector of A = dg(jg) 0) is

1

This gives ¢ = —A [1 mark]. It follows that
*/Tgu [1 mark]|. Thus u= \/Lg(z— z) =

bz+bz and v = ju+i(z+2) =az+az where a = %+2f/§

{ A ] . [1 mark]

z=(v—1u)—i

and b= \/Lg [1 mark]. Then

Znt1 = —AUpt1 + Upoit, [1 mark]
= MNup — vy — u2) + Uy,
= (1 = Nuy + A, + A,
= M=t + Ao, + A(b222 + |22z + b*2°),
= Az, + Ab?22 + 2A[b)? 22 + Ab* 22, [1 mark]



= >

(e)

3

where we have used that —\?>=1-)\. This proves
that
1yivs a = AP =-)\/3,
2AB)2 =2)0/3, v = \?=-)\/3. [1 mark|
We know that there is a coordinate transformation
w = f(z) such that our dynamical system becomes w,;; =
Aw,, + qu2i, + O(|w,|*) and |wny1]? = |wa|? + 2h|w,|* +
O(Jw,|°), where h is the real part of ¢/\ [1 mark].
The sign of h therefore determines the stability of
0. From the helpful formula, we know that

m  (2A—1)ap 1, 9 5
h =Re {XJFW} =518 =,
where m =0 is the coefficient on 2z2Z,. We compute
that
(2A —DaB  iv3 x (=A/3) x (21/3)
XA—1) —A

B —1 1
?—F’Lﬁ.
Therefore
h=—s = I8P~ P <.
3 2

Therefore, the origin is stable [1 mark].



(2) Let G(z) = 6x(1 — ) for x € [0, 1].

(a) Find the subintervals Iy = [0, a] and I; = [b, 1] of I = [0, 1]
such that G™(I) = [y U I;. /2

(b) G has two fixed points in I. Indicate their stability. /3

(c) Let A={x el : Vk >0, G*(z) € I }. Describe A in
terms of the sets Iy and 1. /1

(d) Let ¥ = {w = (wo,w1,...,) : Vi >0, w, € {0,1} }.
Define a metric d on X. Prove that the set U = {w € ¥ :
wo = 1,w; = 0} open in the topology of (X, d). /4

(e) Define the 1-sided shift map on two symbols, o : 3 — 3.

/2
(f) Define an itinerary map, h, for G|A. /1

(g) Show that the itinerary map is continuous, 1-1 and onto.
[Indicate which, if any, theorems you use in the proof.] /7

(h) How many period-2 points does G have? How many prime
period-8 points? /5

Solution.

(a) We want to find solutions to G(x) =1 [1 mark].
Thus 622 — 6z 4+ 1 = 0 or a = =Y12 — , b=

12
6+1\2/ﬁ 14 \/% [1 mark].

(b) We know that the fixed points of G lie in Iy U L,
since they stay in [ under an iteration [1 mark].
We know that G'(r) = 6 — 12z so G'(z) > 6 — 12a =
V12 on Iy [1 mark]. By symmetry, |G'(z) > V12

N |—=
§|H
[N}

on [yUl;. Therefore, the fixed points are repellers

[1 mark].

(c) A is the set of points in [yUl; whose positive orbit

lies in [yUI; [1 mark].



(d)

(e)
(£)

(g)

Lsg,...con

We define a metric d on X by

o0

w —_—
o) =3 1 mark
k=0

for all w,p€X. To prove that U is open in (X%,d),
it suffices to prove that for all w € U, there is

a ball of radius r about w contained in U [1 mark].
Now, if d(w,n) < 1/2, then we must have that w; =

ne for k=0,1 [1 mark]. This proves that the ball
of radius 1/2 about w is contained in U for any w €
U. Thus U is open [1 mark].

For each w € ¥: o(w)y = wgyy for all k& > 0 [2
marks] .

Given = € A, define the itinerary map h(z) to equal
w € X iff G¥(z) € I,, for all k¥ > 0 [1 mark].
Since IyN1; =0, this is well-defined.

Proof that h is continuous, 1-1 and onto. For each
n >0 and w € ¥, define

{rel : GFx)el, Vk=0...n }. [1 mark]

Let 1 =+/12, which is a lower bound for |G’| on IyU

[1.

CLAIM. I, . ., is an interval in I, of length < pu™"
for all w,n [1 mark].

CHECK. If n =0, then the claim follows since [071

is an interval of length at most 1 :,u_o. Therefore,
assume the claim is true for <n—1 and all w. The

..... w, 18 therefore an interval in [, of length

< ;f"“. The set ]w07,,_7w,,L is therefore the intersection
of G '(I,,. .,) with I,,. Since GJI,, is a homeomorphism,
we have proven that Iwo,...,wn is an interval. To prove
the claim about the length, if z,y € [, ., , then

|G(x) — G(y)] < p~™™'. On the other hand, the MVT

plus the lower bound for |G'| gives |G(x)—G(y)| >
p|r—y|. Putting the two inequalities together shows
that |r—y| < pu~™, which proves the claim [2 marks]|.
CLAIM. h is onto and 1-1.

CHECK. For each w € X, the sets are nested: I, D
[wom D "'[wo,...,wn D ---. ©Since each is compact,
their intersection in non-empty. This proves that

h is onto. Since the diameter goes to zero, there

is a unique point x in their intersection. This proves
h is 1-1 [1 mark].

CLAIM. h is continuous.

CHECK. Let x € A and let w = h(x). Let € > 0 be



given. Choose N > log,e ! and let 6 = 67 V. Let
¥ € A bes.t. |[r—2] <. Let w = h(z'). The
MVT implies that for k< N

GH(x) = G*(2)| < 6%z — 2| 6" <671 < b—aq,
since |G'| <6 on I. This implies that

v, € N|r—2| <o = d(h(x),h(z")) <e.
Indeed, if d(w',w) > €, then there is a smallest k <
logoe™? < N s.t. wj #wg. Thus, the k-th iterate
of xr and 2’ lie in opposite intervals and so they
are separated by at least b—a. This does not happen
by the above calculation. This proves the continuity
of h [2 marks].

(h) Since any periodic point of G must lie in A, and
h is a bijection, it suffices to count periodic points
of the shift map [2 marks]. Let P, (resp. p,)
be the number of period-n (resp. prime period-n)
points for the shift map. We know that

P, = #{binary numbers with n digits.} = 2". [1 mark]
Thus
Py =4.

On the other hand, a period-n point that is not a
prime period-n point must also be a periodic point
of period k <mn, k a divisor of n [1 mark]|. For
n = 23, this implies that any non-prime period-8
point is of period 4, so
ps = Py — Py = 2% — 21 = 240. [1 mark]



(3) Define a dynamical system on R? by

Tp+1 = 2xn + 3yn - (xn - yn)2
DS
Yn+1 = %yn + %(mn - yn)Q' (DS)

(a) Show that the origin is a hyperbolic fixed point of (DS).

/2

(b) Let v = ( 1( ) (resp. v_ = ( i )) span the stable (resp.
unstable) subspace of (0,0). Find v and v_. /3

(¢c) Introduce a system of coordinates (u™,u™) adapted to the
stable and unstable subspaces. Express (DS) in the form

Upe = awy +po(u))’ + prutuy + pa(uy)’ (ADS)
Uppr = by +qo(u)? + qrugug + g2(uy)? '

Determine the coefficients a, b, p;, ¢; for i,j =0,1,2. /5

(d) Find the Maclaurin series for W," and W, _, up to second

order, in the coordinates (u™,u™). /10

(e) Sketch the stable and unstable subspaces and manifolds in
the (u™, u™) coordinates. Indicate how orbits beginning on
the manifolds behave, and how nearby orbits behave. /5

Solution.

(a) The linearization at (0,0) has the matrix

[ (2) 1?2 } [1 mark]
which has eigenvalue 2,1/2 [1 mark].

(b) The unstable eigenvector is v_ = [1,0]7 [1 mark].
The stable eigenvector solves %x—l—SyzO [1 mark],
so we can choose v, = [—2,1]7 [1 mark].

(c) We have that # = v~ — 2u" and y = u™ [1 mark].

Thus ™ =y and v~ =2 +2y and z —y=u" —3ut [1



mark]. (DS) is transformed into
- 1 2
Upyr | _ 3Yn + (20 — yn) } 1 mark
{ Up iy } { 22 + 3Yn — (20 — yn)2 + 2(%yn + %(xn - yn)z) [ ]
Lo+ + _ )2
_ | 2% T (SUE ) ] [1 mark|
2u,,
(d) By inspection uw~ = 0 is invariant, hence VVlj;C =
{(u*,0)} [1 mark]. On the other hand, assume that
ut = g(u”) = as(u”)® + --- is the local unstable
manifold expressed as the graph of a function up to
second order [1 mark]. Then
1
ul Ly = §u:{ + (Buf —uy)? using part (c)
1
= Sol) + (o) —u7)? using u* = g(u")
1
= (§a2 +1)(uy ) + - - expanding g(u~)[1 mark]
while,
ut = g(uy, ) using invariance of W,
= g(2u,,) using part (c)
= dag(u; )* + - using g(u”) = az(u”)*+ - - - [2 marks]
We equate coefficients and deduce
2
az =7 [1 mark].
Thus,
I/Vl;c = {(Q(U_)2/77 U_)} [2 marks].

(e) Mark scheme for sketch:
(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].
(iii) Correct arrows [1 mark].
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FIGURE 1. The stable and unstable manifolds of (DS).

(4) (a) State Sharkovskii’s theorem. /5

(b) Let f: [0,1] — [0,1] be a continuous, surjective function
whose graph is shown in figure 2. Prove: for each positive
integer n, f has a periodic orbit of prime period n. /8

/\
/ f

0 1/4 1/2 3/4

Ficure 2. f: [0,1] — [0,1].

(c) Let xpy1 = fu(z,) where f,(z) =z + p+ 2* for z, u € R.
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(i) Find the fixed points of this dynamical system. /2

(ii) Find the value of p for which there is a saddle-node
bifurcation. /1

(iii) Find the value of p for which there is a flip bifurca-
tion. Is it super- or sub-critical? /6

(iv) Sketch the bifurcation diagram in the (u,x) plane.

/3
Solution.

(a) Define the an ordering < on the positive integers
by [1 mark]

34547 - -<12-3<42-5<92-7<- - - <12"-3<42"5<12"T<q- -+ - - - 2412221 20,

[2 marks] where we enumerate all odd primes in increasing
order, then twice the odd primes, and so on, and finally
all powers of 2.

Recall that a point x has prime period n if it is

a fixed point of f" andnot of f* for any k <n [l

mark] .

Sharkovskii’s Theorem. Let f :[0,1] — [0,1] be a
continuous map. If f has a periodic point of prime
period n, then f has a periodic point of prime period

k for all n<k [1 mark].

(b) By Sharkovskii’s theorem, it suffices to prove that

fhas a periodic point of prime period 3 [1 mark].
Let Iy = [0,1/4], I, = [1/4,3/4] and I, = [3/4,1] [1
mark]. By inspection of the graph of fit is clear
that fis continuous and

(1) f(]()) D) Il;
(iii) f(Iy) D Iy [1 mark].
Therefore, by the IVT, there are intervals K; C [;
such that

(1) {(Ko) = I;
(iii) f(Ky) = Ky [1 mark].
Consequently, f? maps Ky to itself [1 mark]. Therefore,
f3 has a fixed point in Kj, call it z [1 mark].

If 2 does not have prime period 3 for f, then it must



(c)

11

be a fixed point of f [1 mark]. Then z=1{(z) so

z must lie in both K, and K, and z = f?(z2) so z

must lie in K; and Ky, too. But Ky C Iy and K5 C

I, are disjoint [1 mark]. Absurd. Therefore, z

has prime period 3. QED

(i) Solving f,(z) =z, we get z = +4/—p [1 mark].

Thus, we have a f.p. iff p <0 [1 mark].

(ii) At 4 =0, the f.p.s collide and disappear. This
is a saddle-node bifurcation [1 mark].

(iii) There is a flip bifurcation at the parameter

p and f.p. . if f) (v.) = —1 and f/(7,) passes
through —1 at the same time [2 marks]. In

this case f)(r) = 14+2r which is positive for

the positive f.p. and is —1 for the negative

f.p. when z, = -1 or p, = —1. It is clear

that the derivative moves through —1 as p decreases.
Therefore, there is a flip bifurcation only at

px = —1 and z, = —1 [2 marks].

To determine super-/sup-criticality, we use the
Schwartzian derivative:

f/// 3 f// 2
As f/ =0, f. = 2 and f, (v.) = —1, we see
that
Hence, the flip bifurcation is supercritical [1
mark] .
(iv) Bifurcation diagram [3 marks]
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unstable f.p.
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FIGURE 3. The bifurcation diagram for f,,.



