
U01875 May 2007 MAT-4-DSy

Dynamical Systems

(1) The Hénon dynamical system in R
2 is defined by

xn+1 = a− byn − x2
n,

yn+1 = xn

}

(DS),

where a, b ∈ R are parameters.

(a) For which range of values of the parameters a and b does
(DS) have two fixed points? /5

(b) Determine the stability of the linearized system at each
fixed point when a = 3, b = −1. /5

(c) When a = −3/4 and b = 1, the point (−1
2
,−1

2
) is a fixed

point. Does the linearized system determine the stability
of this fixed point? /5

(d) Continuing with a = −3/4, b = 1, introduce the coordi-
nates u = x+ 1

2
, v = y + 1

2
. (DS) is transformed to

un+1 = un − vn − u2
n,

vn+1 = un

}

(DS ′),

Introduce the complex variable z = cu + v and transform
(DS’) into the system

zn+1 = λzn + αz2n + βznz̄n + γz̄2n (CDS)

Determine the constants c, λ, α, β and γ. /8

(e) Determine the stability of the fixed point z = 0 for (CDS).
Explain your reasoning. /2

A helpful formula: h = Re
[

m
λ
+ (2λ−1)αβ

λ2(λ−1)

]

− 1
2
|β|2 − |γ|2.

Solution.

(a) (DS) has a fixed point at (x, y) iff x = a− by − x2

and y = x [2 marks] iff y = x and x2+(1+b)x−a =
1



2

0 [1 mark]. There are two distinct f.p.s iff the

discriminant ∆2 = (1+b)2+4a is positive [1 mark].
Therefore,

a > −1

4
(1 + b)2, b ∈ R. [1 mark]

(b) When a = 3, b = −1, the fixed points are x = y =
±
√
3 [1 mark]. The linearized map is

df(x,y) =

[

−2x −b
1 0

]

. [1 mark]

We get

df(±
√
3,±

√
3) =

[

∓2
√
3 1

1 0

]

. [1 mark]

The eigenvalues are ∓(
√
3±2) [1 mark]. Thus, the

fixed points are saddles, hence unstable [1 mark].
(c) The linearized map at (−1

2
,−1

2
) is

[

1 −1
1 0

]

[1 mark]

which has characteristic polynomial λ2 − λ + 1 [1
mark]. The roots are cube roots of −1 -- hence of

unit modulus [1 mark]. Therefore, the linearized

system does not determine the stability of the nonlinear

system [2 marks].
(d) Let g denote the map defined by (DS’). Then dg(0,0)

is the matrix in the previous equation [1 mark].

Let λ, λ̄ be its eigenvalues with λ = 1
2
+ i

√
3
2
. The

λ-th eigenvector of A = dgT(0,0) is
[

−λ
1

]

. [1 mark]

This gives c = −λ [1 mark]. It follows that

z = (v − 1
2
u)− i

√
3
2
u [1 mark]. Thus u = i√

3
(z − z̄) =

bz+b̄z̄ and v = 1
2
u+ 1

2
(z+z̄) = az+āz̄ where a = 1

2
+ i

2
√
3

and b = i√
3
[1 mark]. Then

zn+1 = −λun+1 + vn+1, [1 mark]

= −λ(un − vn − u2
n) + un,

= (1− λ)un + λvn + λu2
n,

= λ(−λ)un + λvn + λ(b2z2n + |b|2zz̄ + b̄2z̄2),

= λzn + λb2z2n + 2λ|b|2zz̄ + λb̄2z̄2, [1 mark]
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where we have used that −λ2 = 1−λ. This proves

that

λ = 1
2
+ i

√
3
2
, α = λb2 = −λ/3,

β = 2λ|b|2 = 2λ/3, γ = λb̄2 = −λ/3. [1 mark]

(e) We know that there is a coordinate transformation

w = f(z) such that our dynamical system becomes wn+1 =
λwn + qw2

nw̄n +O(|wn|4) and |wn+1|2 = |wn|2 + 2h|wn|4 +
O(|wn|5), where h is the real part of q/λ [1 mark].
The sign of h therefore determines the stability of

0. From the helpful formula, we know that

h = Re

[

m

λ
+

(2λ− 1)αβ

λ2(λ− 1)

]

− 1

2
|β|2 − |γ|2,

where m = 0 is the coefficient on z2nz̄n. We compute

that

(2λ− 1)αβ

λ2(λ− 1)
=

i
√
3× (−λ/3)× (2λ/3)

−λ

=
i

3
√
3
×

(

1 + i
√
3
)

=
−1

3
+ i

1

6
√
3
.

Therefore

h = −1

3
− 1

2
|β|2 − |γ|2 < 0.

Therefore, the origin is stable [1 mark].
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(2) Let G(x) = 6x(1− x) for x ∈ [0, 1].

(a) Find the subintervals I0 = [0, a] and I1 = [b, 1] of I = [0, 1]
such that G−1(I) = I0 ∪ I1. /2

(b) G has two fixed points in I. Indicate their stability. /3

(c) Let Λ = {x ∈ I : ∀k ≥ 0, Gk(x) ∈ I }. Describe Λ in
terms of the sets I0 and I1. /1

(d) Let Σ = {ω = (ω0, ω1, . . . , ) : ∀i ≥ 0, ωi ∈ {0, 1} }.
Define a metric d on Σ. Prove that the set U = {ω ∈ Σ :
ω0 = 1, ω1 = 0} open in the topology of (Σ, d). /4

(e) Define the 1-sided shift map on two symbols, σ : Σ → Σ.
/2

(f) Define an itinerary map, h, for G|Λ. /1

(g) Show that the itinerary map is continuous, 1-1 and onto.
[Indicate which, if any, theorems you use in the proof.] /7

(h) How many period-2 points does G have? How many prime
period-8 points? /5

Solution.

(a) We want to find solutions to G(x) = 1 [1 mark].

Thus 6x2 − 6x + 1 = 0 or a = 6−
√
12

12
= 1

2
− 1√

12
, b =

6+
√
12

12
= 1

2
+ 1√

12
[1 mark].

(b) We know that the fixed points of G lie in I0 ∪ I1
since they stay in I under an iteration [1 mark].
We know that G′(x) = 6 − 12x so G′(x) ≥ 6 − 12a =√
12 on I0 [1 mark]. By symmetry, |G′(x)| ≥

√
12

on I0∪I1. Therefore, the fixed points are repellers

[1 mark].
(c) Λ is the set of points in I0∪I1 whose positive orbit

lies in I0 ∪ I1 [1 mark].
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(d) We define a metric d on Σ by

d(ω, η) =
∞
∑

k=0

|ωk − ηk|
2k

, [1 mark]

for all ω, η ∈ Σ. To prove that U is open in (Σ, d),
it suffices to prove that for all ω ∈ U, there is

a ball of radius r about ω contained in U [1 mark].
Now, if d(ω, η) < 1/2, then we must have that ωk =
ηk for k = 0, 1 [1 mark]. This proves that the ball

of radius 1/2 about ω is contained in U for any ω ∈
U. Thus U is open [1 mark].

(e) For each ω ∈ Σ: σ(ω)k = ωk+1 for all k ≥ 0 [2
marks].

(f) Given x ∈ Λ, define the itinerary map h(x) to equal

ω ∈ Σ iff Gk(x) ∈ Iωk
for all k ≥ 0 [1 mark].

Since I0 ∩ I1 = ∅, this is well-defined.

(g) Proof that h is continuous, 1-1 and onto. For each

n ≥ 0 and ω ∈ Σ, define

Iω0,...,ωn
= {x ∈ I : Gk(x) ∈ Iωk

∀k = 0 . . . n }. [1 mark]

Let µ =
√
12, which is a lower bound for |G′| on I0∪

I1.
CLAIM. Iω0,...,ωn

is an interval in Iω0
of length ≤ µ−n

for all ω, n [1 mark].
CHECK. If n = 0, then the claim follows since I0,1
is an interval of length at most 1 = µ−0. Therefore,

assume the claim is true for ≤ n−1 and all ω. The

set Iω1,...,ωn
is therefore an interval in Iω1

of length

≤ µ−n+1. The set Iω0,...,ωn
is therefore the intersection

of G−1(Iω1,...,ωn
) with Iω0

. Since G|Iω0
is a homeomorphism,

we have proven that Iω0,...,ωn
is an interval. To prove

the claim about the length, if x, y ∈ Iω0,...,ωn
, then

|G(x) − G(y)| ≤ µ−n+1. On the other hand, the MVT

plus the lower bound for |G′| gives |G(x)−G(y)| ≥
µ|x−y|. Putting the two inequalities together shows

that |x−y| ≤ µ−n, which proves the claim [2 marks].
CLAIM. h is onto and 1-1.

CHECK. For each ω ∈ Σ, the sets are nested: Iω0
⊃

Iω0,ω1
⊃ · · · Iω0,...,ωn

⊃ · · · . Since each is compact,

their intersection in non-empty. This proves that

h is onto. Since the diameter goes to zero, there

is a unique point x in their intersection. This proves

h is 1-1 [1 mark].
CLAIM. h is continuous.

CHECK. Let x ∈ Λ and let ω = h(x). Let ǫ > 0 be
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given. Choose N > log2 ǫ
−1 and let δ = 6−N. Let

x′ ∈ Λ be s.t. |x − x′| < δ. Let ω′ = h(x′). The

MVT implies that for k < N

|Gk(x)−Gk(x′)| ≤ 6k|x− x′| ≤ 6k−N ≤ 6−1 < b− a,

since |G′| ≤ 6 on I. This implies that

x, x′ ∈ Λ, |x− x′| < δ =⇒ d(h(x), h(x′)) ≤ ǫ.

Indeed, if d(ω′, ω) > ǫ, then there is a smallest k <
log2 ǫ

−1 < N s.t. ω′
k 6= ωk. Thus, the k-th iterate

of x and x′ lie in opposite intervals and so they

are separated by at least b−a. This does not happen

by the above calculation. This proves the continuity

of h [2 marks].
(h) Since any periodic point of G must lie in Λ, and

h is a bijection, it suffices to count periodic points

of the shift map [2 marks]. Let Pn (resp. pn)
be the number of period-n (resp. prime period-n)
points for the shift map. We know that

Pn = #{binary numbers with n digits.} = 2n. [1 mark]

Thus

P2 = 4.

On the other hand, a period-n point that is not a

prime period-n point must also be a periodic point

of period k < n, k a divisor of n [1 mark]. For

n = 23, this implies that any non-prime period-8
point is of period 4, so

p8 = P8 − P4 = 28 − 24 = 240. [1 mark]
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(3) Define a dynamical system on R
2 by

xn+1 = 2xn + 3yn − (xn − yn)
2

yn+1 = 1
2
yn +

1
2
(xn − yn)

2.
(DS)

(a) Show that the origin is a hyperbolic fixed point of (DS).
/2

(b) Let v+ =

(

∗
1

)

(resp. v− =

(

1
∗

)

) span the stable (resp.

unstable) subspace of (0, 0). Find v+ and v−. /3

(c) Introduce a system of coordinates (u+, u−) adapted to the
stable and unstable subspaces. Express (DS) in the form

u+
n+1 = au+

n + p0(u
+
n )

2 + p1u
+
nu

−
n + p2(u

−
n )

2

u−
n+1 = bu−

n + q0(u
+
n )

2 + q1u
+
nu

−
n + q2(u

−
n )

2 (ADS).

Determine the coefficients a, b, pi, qj for i, j = 0, 1, 2. /5

(d) Find the Maclaurin series for W+
loc and W−

loc, up to second
order, in the coordinates (u+, u−). /10

(e) Sketch the stable and unstable subspaces and manifolds in
the (u+, u−) coordinates. Indicate how orbits beginning on
the manifolds behave, and how nearby orbits behave. /5

Solution.

(a) The linearization at (0, 0) has the matrix

[

2 3
0 1/2

]

[1 mark]

which has eigenvalue 2, 1/2 [1 mark].
(b) The unstable eigenvector is v− = [1, 0]T [1 mark].

The stable eigenvector solves 3
2
x+3y = 0 [1 mark],

so we can choose v+ = [−2, 1]T [1 mark].
(c) We have that x = u− − 2u+ and y = u+ [1 mark].

Thus u+ = y and u− = x+ 2y and x− y = u− − 3u+ [1
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mark]. (DS) is transformed into
[

u+
n+1

u−
n+1

]

=

[

1
2
yn + (xn − yn)

2

2xn + 3yn − (xn − yn)
2 + 2(1

2
yn +

1
2
(xn − yn)

2)

]

[1 mark]

=

[

1
2
u+
n + (3u+

n − u−
n )

2

2u−
n

]

[1 mark]

(d) By inspection u− = 0 is invariant, hence W+
loc =

{(u+, 0)} [1 mark]. On the other hand, assume that

u+ = g(u−) = a2(u
−)2 + · · · is the local unstable

manifold expressed as the graph of a function up to

second order [1 mark]. Then

u+
n+1 =

1

2
u+
n + (3u+

n − u−
n )

2 using part (c)

=
1

2
g(u−

n ) + (3g(u−
n )− u−

n )
2 using u+ = g(u−)

= (
1

2
a2 + 1)(u−

n )
2 + · · · expanding g(u−)[1 mark]

while,

u+
n+1 = g(u−

n+1) using invariance of W+
loc

= g(2u−
n ) using part (c)

= 4a2(u
−
n )

2 + · · · using g(u−) = a2(u
−)2 + · · · [2 marks]

We equate coefficients and deduce

a2 =
2

7
[1 mark].

Thus,

W−
loc = {(2(u−)2/7, u−)} [2 marks].

(e) Mark scheme for sketch:

(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].

(iii) Correct arrows [1 mark].
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Unstable
Subspace Unstable Manifold

Stable Subspace=
Stable Manifold

Figure 1. The stable and unstable manifolds of (DS).

(4) (a) State Sharkovskii’s theorem. /5

(b) Let f : [0, 1] → [0, 1] be a continuous, surjective function
whose graph is shown in figure 2. Prove: for each positive
integer n, f has a periodic orbit of prime period n. /8

0 1/4        1/2         3/4        1

f

Figure 2. f : [0, 1] → [0, 1].

(c) Let xn+1 = fµ(xn) where fµ(x) = x+ µ+ x2 for x, µ ∈ R.
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(i) Find the fixed points of this dynamical system. /2

(ii) Find the value of µ for which there is a saddle-node
bifurcation. /1

(iii) Find the value of µ for which there is a flip bifurca-
tion. Is it super- or sub-critical? /6

(iv) Sketch the bifurcation diagram in the (µ, x) plane.
/3

Solution.

(a) Define the an ordering ⊳ on the positive integers

by [1 mark]

3⊳5⊳7⊳· · ·⊳2·3⊳2·5⊳2·7⊳· · ·⊳2n·3⊳2n5⊳2n7⊳· · · · · ·⊳2n⊳· · ·⊳22⊳21⊳20,

[2 marks] where we enumerate all odd primes in increasing

order, then twice the odd primes, and so on, and finally

all powers of 2.

Recall that a point x has prime period n if it is

a fixed point of fn andnot of fk for any k < n [1
mark].
Sharkovskii’s Theorem. Let f : [0, 1] → [0, 1] be a

continuous map. If f has a periodic point of prime

period n, then f has a periodic point of prime period

k for all n⊳ k [1 mark].

(b) By Sharkovskii’s theorem, it suffices to prove that

fhas a periodic point of prime period 3 [1 mark].
Let I0 = [0, 1/4], I1 = [1/4, 3/4] and I2 = [3/4, 1] [1
mark]. By inspection of the graph of fit is clear

that fis continuous and

(i) f(I0) ⊃ I1;
(ii) f(I1) ⊃ I2;

(iii) f(I2) ⊃ I0 [1 mark].
Therefore, by the IVT, there are intervals Ki ⊂ Ii
such that

(i) f(K0) = I1;
(ii) f(K1) = I2;

(iii) f(K2) = K0 [1 mark].
Consequently, f3 maps K0 to itself [1 mark]. Therefore,

f3 has a fixed point in K0, call it z [1 mark].
If z does not have prime period 3 for f, then it must
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be a fixed point of f [1 mark]. Then z = f(z) so

z must lie in both K0 and K1, and z = f2(z) so z
must lie in K1 and K2, too. But K0 ⊂ I0 and K2 ⊂
I2 are disjoint [1 mark]. Absurd. Therefore, z
has prime period 3. QED

(c) (i) Solving fµ(x) = x, we get x = ±√−µ [1 mark].
Thus, we have a f.p. iff µ ≤ 0 [1 mark].

(ii) At µ = 0, the f.p.s collide and disappear. This

is a saddle-node bifurcation [1 mark].
(iii) There is a flip bifurcation at the parameter

µ∗ and f.p. x∗ if f ′
µ∗

(x∗) = −1 and f ′
µ(xµ) passes

through −1 at the same time [2 marks]. In

this case f ′
µ(x) = 1+2x which is positive for

the positive f.p. and is −1 for the negative

f.p. when x∗ = −1 or µ∗ = −1. It is clear

that the derivative moves through −1 as µ decreases.

Therefore, there is a flip bifurcation only at

µ∗ = −1 and x∗ = −1 [2 marks].
To determine super-/sup-criticality, we use the

Schwartzian derivative:

Ds{f} =
f ′′′

f ′ − 3

2

[

f ′′

f ′

]2

. [1 mark]

As f ′′′
µ = 0, fµ = 2 and f ′

µ∗

(x∗) = −1, we see

that

Ds{fµ∗
}(x∗) < 0.

Hence, the flip bifurcation is supercritical [1
mark].

(iv) Bifurcation diagram [3 marks]
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−1

x

unstable f.p.

stable
f.p.

unstable
f.p.

stable period−2
orbit

saddle−
node
bifurcat−
ionbifurcation

flip
mu

Figure 3. The bifurcation diagram for fµ.


