U01875

May 2007
Dynamical Systems
(1) The Hénon dynamical system in \mathbb{R}^{2} is defined by

$$
\left.\begin{array}{rl}
x_{n+1} & =a-b y_{n}-x_{n}^{2} \tag{DS}\\
y_{n+1} & =x_{n}
\end{array}\right\}
$$

where $a, b \in \mathbb{R}$ are parameters.
(a) For which range of values of the parameters a and b does (DS) have two fixed points?
(b) Determine the stability of the linearized system at each fixed point when $a=3, b=-1$.
(c) When $a=-3 / 4$ and $b=1$, the point $\left(-\frac{1}{2},-\frac{1}{2}\right)$ is a fixed point. Does the linearized system determine the stability of this fixed point?
(d) Continuing with $a=-3 / 4, b=1$, introduce the coordinates $u=x+\frac{1}{2}, v=y+\frac{1}{2}$. (DS) is transformed to

$$
\left.\begin{array}{rl}
u_{n+1} & =u_{n}-v_{n}-u_{n}^{2} \\
v_{n+1} & =u_{n}
\end{array}\right\}
$$

Introduce the complex variable $z=c u+v$ and transform (DS') into the system

$$
\begin{equation*}
z_{n+1}=\lambda z_{n}+\alpha z_{n}^{2}+\beta z_{n} \bar{z}_{n}+\gamma \bar{z}_{n}^{2} \tag{CDS}
\end{equation*}
$$

Determine the constants $c, \lambda, \alpha, \beta$ and γ.
(e) Determine the stability of the fixed point $z=0$ for (CDS). Explain your reasoning.

A helpful formula: $h=\operatorname{Re}\left[\frac{m}{\lambda}+\frac{(2 \lambda-1) \alpha \beta}{\lambda^{2}(\lambda-1)}\right]-\frac{1}{2}|\beta|^{2}-|\gamma|^{2}$.

Solution.

(a) (DS) has a fixed point at (x, y) iff $x=a-b y-x^{2}$ and $y=x$ [2 marks] iff $y=x$ and $x^{2}+(1+b) x-a=$

0 [1 mark]. There are two distinct f.p.s iff the discriminant $\Delta^{2}=(1+b)^{2}+4 a$ is positive [1 mark]. Therefore,

$$
a>-\frac{1}{4}(1+b)^{2}, \quad b \in \mathbb{R} . \quad[\mathbf{1} \text { mark }]
$$

(b) When $a=3, b=-1$, the fixed points are $x=y=$ $\pm \sqrt{3}$ [1 mark]. The linearized map is

$$
d f_{(x, y)}=\left[\begin{array}{cc}
-2 x & -b \\
1 & 0
\end{array}\right]
$$

[1 mark]
We get
$d f_{(\pm \sqrt{3}, \pm \sqrt{3})}=\left[\begin{array}{cc}\mp 2 \sqrt{3} & 1 \\ 1 & 0\end{array}\right] . \quad[\mathbf{1}$ mark $]$
The eigenvalues are $\mp(\sqrt{3} \pm 2)$ [1 mark]. Thus, the fixed points are saddles, hence unstable [1 mark].
(c) The linearized map at $\left(-\frac{1}{2},-\frac{1}{2}\right)$ is

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right] \quad[\mathbf{1} \mathbf{m a r k}]
$$

which has characteristic polynomial $\lambda^{2}-\lambda+1[1$ mark]. The roots are cube roots of -1 -- hence of unit modulus [1 mark]. Therefore, the linearized system does not determine the stability of the nonlinear system [2 marks].
(d) Let g denote the map defined by (DS'). Then $d g_{(0,0)}$ is the matrix in the previous equation [1 mark]. Let $\lambda, \bar{\lambda}$ be its eigenvalues with $\lambda=\frac{1}{2}+i \frac{\sqrt{3}}{2}$. The λ-th eigenvector of $A=d g_{(0,0)}^{T}$ is

$$
\left[\begin{array}{c}
-\lambda \\
1
\end{array}\right] . \quad[\mathbf{1} \text { mark }]
$$

This gives $c=-\lambda$ [$\mathbf{1}$ mark]. It follows that $z=\left(v-\frac{1}{2} u\right)-i \frac{\sqrt{3}}{2} u \quad\left[\mathbf{1}\right.$ mark]. Thus $u=\frac{i}{\sqrt{3}}(z-\bar{z})=$ $b z+\bar{b} \bar{z}$ and $v=\frac{1}{2} u+\frac{1}{2}(z+\bar{z})=a z+\bar{a} \bar{z}$ where $a=\frac{1}{2}+\frac{i}{2 \sqrt{3}}$ and $b=\frac{i}{\sqrt{3}}$ [1 mark]. Then
$z_{n+1}=-\lambda u_{n+1}+v_{n+1}, \quad[1$ mark $]$
$=-\lambda\left(u_{n}-v_{n}-u_{n}^{2}\right)+u_{n}$,
$=(1-\lambda) u_{n}+\lambda v_{n}+\lambda u_{n}^{2}$,
$=\lambda(-\lambda) u_{n}+\lambda v_{n}+\lambda\left(b^{2} z_{n}^{2}+|b|^{2} z \bar{z}+\bar{b}^{2} \bar{z}^{2}\right)$,
$=\lambda z_{n}+\lambda b^{2} z_{n}^{2}+2 \lambda|b|^{2} z \bar{z}+\lambda \bar{b}^{2} \bar{z}^{2}, \quad[\mathbf{1}$ mark $]$
where we have used that $-\lambda^{2}=1-\lambda$. This proves that
$\begin{array}{lll}\lambda=\frac{1}{2}+i \frac{\sqrt{3}}{2}, & \alpha=\lambda b^{2}=-\lambda / 3, \\ \beta & =2 \lambda|b|^{2}=2 \lambda / 3, & \gamma=\lambda \bar{b}^{2}=-\lambda / 3 .\end{array}$
[1 mark]
(e) We know that there is a coordinate transformation $w=f(z)$ such that our dynamical system becomes $w_{n+1}=$ $\lambda w_{n}+q w_{n}^{2} \bar{w}_{n}+O\left(\left|w_{n}\right|^{4}\right)$ and $\left|w_{n+1}\right|^{2}=\left|w_{n}\right|^{2}+2 h\left|w_{n}\right|^{4}+$ $O\left(\left|w_{n}\right|^{5}\right)$, where h is the real part of q / λ [1 mark].
The sign of h therefore determines the stability of 0 . From the helpful formula, we know that

$$
h=\operatorname{Re}\left[\frac{m}{\lambda}+\frac{(2 \lambda-1) \alpha \beta}{\lambda^{2}(\lambda-1)}\right]-\frac{1}{2}|\beta|^{2}-|\gamma|^{2},
$$

where $m=0$ is the coefficient on $z_{n}^{2} \bar{z}_{n}$. We compute that

$$
\begin{aligned}
\frac{(2 \lambda-1) \alpha \beta}{\lambda^{2}(\lambda-1)} & =\frac{i \sqrt{3} \times(-\lambda / 3) \times(2 \lambda / 3)}{-\lambda} \\
& =\frac{i}{3 \sqrt{3}} \times(1+i \sqrt{3}) \\
& =\frac{-1}{3}+i \frac{1}{6 \sqrt{3}}
\end{aligned}
$$

Therefore

$$
h=-\frac{1}{3}-\frac{1}{2}|\beta|^{2}-|\gamma|^{2}<0
$$

Therefore, the origin is stable [1 mark].
(2) Let $G(x)=6 x(1-x)$ for $x \in[0,1]$.
(a) Find the subintervals $I_{0}=[0, a]$ and $I_{1}=[b, 1]$ of $I=[0,1]$
(b) G has two fixed points in I. Indicate their stability. /3
(c) Let $\Lambda=\left\{x \in I: \forall k \geq 0, G^{k}(x) \in I\right\}$. Describe Λ in terms of the sets I_{0} and I_{1}.
/ 1
(d) Let $\Sigma=\left\{\omega=\left(\omega_{0}, \omega_{1}, \ldots,\right): \quad \forall i \geq 0, \omega_{i} \in\{0,1\}\right\}$. Define a metric d on Σ. Prove that the set $U=\{\omega \in \Sigma$: $\left.\omega_{0}=1, \omega_{1}=0\right\}$ open in the topology of (Σ, d).
(e) Define the 1-sided shift map on two symbols, $\sigma: \Sigma \rightarrow \Sigma$.
(f) Define an itinerary map, h, for $G \mid \Lambda$.
/1
(g) Show that the itinerary map is continuous, 1-1 and onto. [Indicate which, if any, theorems you use in the proof.] /7
(h) How many period-2 points does G have? How many prime period- 8 points?
$/ 5$

Solution.

(a) We want to find solutions to $G(x)=1\left[\begin{array}{ll}1 & m a r k\end{array}\right]$. Thus $6 x^{2}-6 x+1=0$ or $a=\frac{6-\sqrt{12}}{12}=\frac{1}{2}-\frac{1}{\sqrt{12}}, \quad b=$ $\frac{6+\sqrt{12}}{12}=\frac{1}{2}+\frac{1}{\sqrt{12}}\left[\begin{array}{ll}1 & \text { mark }] . ~\end{array}\right.$
(b) We know that the fixed points of G lie in $I_{0} \cup I_{1}$ since they stay in I under an iteration [1 mark]. We know that $G^{\prime}(x)=6-12 x$ so $G^{\prime}(x) \geq 6-12 a=$ $\sqrt{12}$ on $I_{0}\left[1 \quad\right.$ mark]. By symmetry, $\left|G^{\prime}(x)\right| \geq \sqrt{12}$ on $I_{0} \cup I_{1}$. Therefore, the fixed points are repellers [1 mark].
(c) Λ is the set of points in $I_{0} \cup I_{1}$ whose positive orbit lies in $I_{0} \cup I_{1}$ [1 mark].
(d) We define a metric d on Σ by

$$
d(\omega, \eta)=\sum_{k=0}^{\infty} \frac{\left|\omega_{k}-\eta_{k}\right|}{2^{k}}, \quad[\mathbf{1} \mathbf{m a r k}]
$$

for all $\omega, \eta \in \Sigma$. To prove that U is open in (Σ, d), it suffices to prove that for all $\omega \in U$, there is a ball of radius r about ω contained in U [1 mark] Now, if $d(\omega, \eta)<1 / 2$, then we must have that $\omega_{k}=$ η_{k} for $k=0,1$ [$\mathbf{1}$ mark]. This proves that the ball of radius $1 / 2$ about ω is contained in U for any $\omega \in$ U. Thus U is open [1 mark].
(e) For each $\omega \in \Sigma: \quad \sigma(\omega)_{k}=\omega_{k+1}$ for all $k \geq 0$ [2 marks].
f) Given $x \in \Lambda$, define the itinerary map $h(x)$ to equal $\omega \in \Sigma \operatorname{iff} G^{k}(x) \in I_{\omega_{k}}$ for all $k \geq 0$ [1 mark]. Since $I_{0} \cap I_{1}=\emptyset$, this is well-defined.
(g) Proof that h is continuous, $1-1$ and onto. For each $n \geq 0$ and $\omega \in \Sigma$, define
$I_{\omega_{0}, \ldots, \omega_{n}}=\left\{x \in I: \quad G^{k}(x) \in I_{\omega_{k}} \forall k=0 \ldots n\right\} . \quad[\mathbf{1}$ mark]
Let $\mu=\sqrt{12}$, which is a lower bound for $\left|G^{\prime}\right|$ on $I_{0} \cup$ I_{1}.
CLAIM. $I_{\omega_{0}, \ldots, \omega_{n}}$ is an interval in $I_{\omega_{0}}$ of length $\leq \mu^{-n}$ for all ω, n [1 mark].
CHECK. If $n=0$, then the claim follows since $I_{0,1}$ is an interval of length at most $1=\mu^{-0}$. Therefore, assume the claim is true for $\leq n-1$ and all ω. The set $I_{\omega_{1} \ldots, \omega_{n}}$ is therefore an interval in $I_{\omega_{1}}$ of length $\leq \mu^{-n+1}$. The set $I_{\omega_{0}, \ldots, \omega_{n}}$ is therefore the intersection of $G^{-1}\left(I_{\omega_{1}, \ldots, \omega_{n}}\right)$ with $I_{\omega_{0}}$. Since $G \mid I_{\omega_{0}}$ is a homeomorphism we have proven that $I_{\omega_{0}, \ldots, \omega_{n}}$ is an interval. To prove the claim about the length, if $x, y \in I_{\omega_{0}, \ldots, \omega_{n}}$, then $G(x)-G(y) \mid \leq \mu^{-n+1}$. On the other hand, the MVT plus the lower bound for $\left|G^{\prime}\right|$ gives $|G(x)-G(y)| \geq$ $\mu|x-y|$. Putting the two inequalities together shows that $|x-y| \leq \mu^{-n}$, which proves the claim [2 marks]. CLAIM. h is onto and 1-1.
CHECK. For each $\omega \in \Sigma$, the sets are nested: $I_{\omega_{0}} \supset$
$I_{\omega_{0}, \omega_{1}} \supset \cdots I_{\omega_{0}, \ldots, \omega_{n}} \supset \cdots$. Since each is compact,
their intersection in non-empty. This proves that
h is onto. Since the diameter goes to zero, there
is a unique point x in their intersection. This proves
h is 1-1 [1 mark]
CLAIM. h is continuous.
CHECK. Let $x \in \Lambda$ and let $\omega=h(x)$. Let $\epsilon>0$ be
given. Choose $N>\log _{2} \epsilon^{-1}$ and let $\delta=6^{-N}$. Let $x^{\prime} \in \Lambda$ be s.t. $\left|x-x^{\prime}\right|<\delta$. Let $\omega^{\prime}=h\left(x^{\prime}\right)$. The MVT implies that for $k<N$
$\left|G^{k}(x)-G^{k}\left(x^{\prime}\right)\right| \leq 6^{k}\left|x-x^{\prime}\right| \leq 6^{k-N} \leq 6^{-1}<b-a$, since $\left|G^{\prime}\right| \leq 6$ on I. This implies that
$x, x^{\prime} \in \Lambda,\left|x-x^{\prime}\right|<\delta \quad \Longrightarrow \quad d\left(h(x), h\left(x^{\prime}\right)\right) \leq \epsilon$
Indeed, if $d\left(\omega^{\prime}, \omega\right)>\epsilon$, then there is a smallest $k<$ $\log _{2} \epsilon^{-1}<N$ s.t. $\quad \omega_{k}^{\prime} \neq \omega_{k}$. Thus, the k-th iterate of x and x^{\prime} lie in opposite intervals and so they are separated by at least $b-a$. This does not happen by the above calculation. This proves the continuity of h [2 marks].
(h) Since any periodic point of G must lie in Λ, and h is a bijection, it suffices to count periodic points of the shift map [2 marks]. Let P_{n} (resp. p_{n}) be the number of period- n (resp. prime period- n) points for the shift map. We know that
$P_{n}=\#\{$ binary numbers with n digits. $\}=2^{n} . \quad[\mathbf{1}$ mark $]$ Thus

$$
P_{2}=4
$$

On the other hand, a period-n point that is not a prime period-n point must also be a periodic point of period $k<n, k$ a divisor of n [1 mark]. For $n=2^{3}$, this implies that any non-prime period- 8 point is of period 4, so
$p_{8}=P_{8}-P_{4}=2^{8}-2^{4}=240$.
[1 mark]
(3) Define a dynamical system on \mathbb{R}^{2} by

$$
\begin{align*}
& x_{n+1}=2 x_{n}+3 y_{n}-\left(x_{n}-y_{n}\right)^{2} \tag{DS}\\
& y_{n+1}=\frac{1}{2} y_{n}+\frac{1}{2}\left(x_{n}-y_{n}\right)^{2}
\end{align*}
$$

(a) Show that the origin is a hyperbolic fixed point of (DS).
(b) Let $\mathbf{v}_{+}=\binom{*}{1}\left(\right.$ resp. $\left.\mathbf{v}_{-}=\binom{1}{*}\right)$ span the stable (resp. unstable) subspace of $(0,0)$. Find \mathbf{v}_{+}and \mathbf{v}_{-}.
(c) Introduce a system of coordinates $\left(u^{+}, u^{-}\right)$adapted to the stable and unstable subspaces. Express (DS) in the form

$$
\begin{align*}
& u_{n+1}^{+}=a u_{n}^{+}+p_{0}\left(u_{n}^{+}\right)^{2}+p_{1} u_{n}^{+} u_{n}^{-}+p_{2}\left(u_{n}^{-}\right)^{2} \tag{ADS}\\
& u_{n+1}^{-}=b u_{n}^{-}+q_{0}\left(u_{n}^{+}\right)^{2}+q_{1} u_{n}^{+} u_{n}^{-}+q_{2}\left(u_{n}^{-}\right)^{2}
\end{align*}
$$

Determine the coefficients a, b, p_{i}, q_{j} for $i, j=0,1,2 . \quad / 5$
(d) Find the Maclaurin series for $W_{l o c}^{+}$and $W_{l o c}^{-}$, up to second order, in the coordinates $\left(u^{+}, u^{-}\right)$.
/10
(e) Sketch the stable and unstable subspaces and manifolds in the $\left(u^{+}, u^{-}\right)$coordinates. Indicate how orbits beginning on the manifolds behave, and how nearby orbits behave. /5

Solution.

(a) The linearization at $(0,0)$ has the matrix

$$
\left[\begin{array}{cc}
2 & 3 \\
0 & 1 / 2
\end{array}\right] \quad[\mathbf{1} \text { mark }]
$$

which has eigenvalue $2,1 / 2$ [$\mathbf{1}$ mark].
(b) The unstable eigenvector is $\mathbf{v}_{-}=[1,0]^{T}[1$ mark]. The stable eigenvector solves $\frac{3}{2} x+3 y=0$ [1 mark], so we can choose $\mathbf{v}_{+}=[-2,1]^{T} \quad[\mathbf{1}$ mark].
(c) We have that $x=u^{-}-2 u^{+}$and $y=u^{+}\left[\begin{array}{ll}1 & m a r k\end{array}\right]$. Thus $u^{+}=y$ and $u^{-}=x+2 y$ and $x-y=u^{-}-3 u^{+}[\mathbf{1}$

8

$$
\begin{gathered}
\text { mark]. (DS) is transformed into } \\
{\left[\begin{array}{c}
u_{n+1}^{+} \\
u_{n+1}^{-}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} y_{n}+\left(x_{n}-y_{n}\right)^{2} \\
2 x_{n}+3 y_{n}-\left(x_{n}-y_{n}\right)^{2}+2\left(\frac{1}{2} y_{n}+\frac{1}{2}\left(x_{n}-y_{n}\right)^{2}\right)
\end{array}\right]} \\
=\left[\begin{array}{c}
\frac{1}{2} u_{n}^{+}+\left(3 u_{n}^{+}-u_{n}^{-}\right)^{2} \\
2 u_{n}^{-}
\end{array}\right]
\end{gathered}
$$

(d) By inspection $u^{-}=0$ is invariant, hence $W_{l o c}^{+}=$ $\left\{\left(u^{+}, 0\right)\right\}$ [1 mark]. On the other hand, assume that $u^{+}=g\left(u^{-}\right)=a_{2}\left(u^{-}\right)^{2}+\cdots$ is the local unstable manifold expressed as the graph of a function up to second order [1 mark]. Then

$$
\begin{array}{rlr}
u_{n+1}^{+} & =\frac{1}{2} u_{n}^{+}+\left(3 u_{n}^{+}-u_{n}^{-}\right)^{2} & \text { using part (c) } \\
& =\frac{1}{2} g\left(u_{n}^{-}\right)+\left(3 g\left(u_{n}^{-}\right)-u_{n}^{-}\right)^{2} & \text { using } u^{+}=g\left(u^{-}\right) \\
& =\left(\frac{1}{2} a_{2}+1\right)\left(u_{n}^{-}\right)^{2}+\cdots & \text { expanding } g\left(u^{-}\right)[\mathbf{1} \mathbf{~ m a r k}] \\
& \text { while, } & \\
u_{n+1}^{+} & =g\left(u_{n+1}^{-}\right) & \text {using invariance of } W_{l o c}^{+} \\
& =g\left(2 u_{n}^{-}\right) & \text {using part (c) } \\
& =4 a_{2}\left(u_{n}^{-}\right)^{2}+\cdots & \text { using } g\left(u^{-}\right)=a_{2}\left(u^{-}\right)^{2}+\cdots[\mathbf{2} \text { marks }]
\end{array}
$$

We equate coefficients and deduce
$a_{2}=\frac{2}{7}$
[1 mark].
Thus,
$W_{l o c}^{-}=\left\{\left(2\left(u^{-}\right)^{2} / 7, u^{-}\right)\right\}$
[2 marks].
(e) Mark scheme for sketch:
(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].
(iii) Correct arrows [1 mark].

Figure 1. The stable and unstable manifolds of (DS).
(4) (a) State Sharkovskii's theorem.
(b) Let $\mathrm{f}:[0,1] \rightarrow[0,1]$ be a continuous, surjective function whose graph is shown in figure 2. Prove: for each positive integer n, f has a periodic orbit of prime period n. $/ 8$

$$
\text { Figure 2. } \mathrm{f}:[0,1] \rightarrow[0,1]
$$

(c) Let $x_{n+1}=f_{\mu}\left(x_{n}\right)$ where $f_{\mu}(x)=x+\mu+x^{2}$ for $x, \mu \in \mathbb{R}$.
(i) Find the fixed points of this dynamical system.
(ii) Find the value of μ for which there is a saddle-node bifurcation.
(iii) Find the value of μ for which there is a flip bifurcation. Is it super- or sub-critical?
(iv) Sketch the bifurcation diagram in the (μ, x) plane.

/3

Solution.

(a) Define the an ordering \triangleleft on the positive integers by [1 mark]
$3 \triangleleft 5 \triangleleft 7 \triangleleft \cdots \triangleleft 2 \cdot 3 \triangleleft 2 \cdot 5 \triangleleft 2 \cdot 7 \triangleleft \cdots \triangleleft 2^{n} \cdot 3 \triangleleft 2^{n} 5 \triangleleft 2^{n} 7 \triangleleft \cdots \cdots \triangleleft 2^{n} \triangleleft \cdots \triangleleft 2^{2} \triangleleft 2^{1} \triangleleft 2^{0}$,
[2 marks] where we enumerate all odd primes in increasing order, then twice the odd primes, and so on, and finally all powers of 2
Recall that a point x has prime period n if it is a fixed point of f^{n} andnot of f^{k} for any $k<n$ [1 mark].
Sharkovskii's Theorem. Let $f:[0,1] \rightarrow[0,1]$ be a continuous map. If f has a periodic point of prime period n, then f has a periodic point of prime period k for all $n \triangleleft k$ [1 mark].
(b) By Sharkovskii's theorem, it suffices to prove that fhas a periodic point of prime period 3 [1 mark]. Let $I_{0}=[0,1 / 4], I_{1}=[1 / 4,3 / 4]$ and $I_{2}=[3 / 4,1][1$ mark]. By inspection of the graph of fit is clear that fis continuous and
(i) $\mathrm{f}\left(I_{0}\right) \supset I_{1}$;
(ii) $\mathrm{f}\left(I_{1}\right) \supset I_{2}$;
(iii) $\mathrm{f}\left(I_{2}\right) \supset I_{0}$ [1 mark].

Therefore, by the IVT, there are intervals $K_{i} \subset I_{i}$ such that
(i) $\mathrm{f}\left(K_{0}\right)=I_{1}$;
(ii) $\mathrm{f}\left(K_{1}\right)=I_{2}$;
(iii) $\mathrm{f}\left(K_{2}\right)=K_{0}$ [1 mark].

Consequently, f^{3} maps K_{0} to itself [1 mark]. Therefore,
f^{3} has a fixed point in K_{0}, call it $z\left[\begin{array}{l}1 \\ \text { mark }] .\end{array}\right.$
If z does not have prime period 3 for f , then it must
be a fixed point of $\mathrm{f}[\mathbf{1}$ mark]. Then $z=\mathrm{f}(z)$ so z must lie in both K_{0} and K_{1}, and $z=\mathrm{f}^{2}(z)$ so z must lie in K_{1} and K_{2}, too. But $K_{0} \subset I_{0}$ and $K_{2} \subset$ I_{2} are disjoint [1 mark]. Absurd. Therefore, z has prime period 3 . QED
c) (i) Solving $f_{\mu}(x)=x$, we get $x= \pm \sqrt{-\mu}$ [1 mark]. Thus, we have a f.p. iff $\mu \leq 0$ [$\mathbf{1}$ mark]
(ii) At $\mu=0$, the f.p.s collide and disappear. This is a saddle-node bifurcation [1 mark].
(iii) There is a flip bifurcation at the parameter μ_{*} and f.p. x_{*} if $f_{\mu_{*}}^{\prime}\left(x_{*}\right)=-1$ and $f_{\mu}^{\prime}\left(x_{\mu}\right)$ passes through -1 at the same time [2 marks]. In this case $f_{\mu}^{\prime}(x)=1+2 x$ which is positive for the positive f.p. and is -1 for the negative f.p. when $x_{*}=-1$ or $\mu_{*}=-1$. It is clear that the derivative moves through -1 as μ decreases. Therefore, there is a flip bifurcation only at $\mu_{*}=-1$ and $x_{*}=-1$ [2 marks].
To determine super-/sup-criticality, we use the Schwartzian derivative
$D_{s}\{f\}=\frac{f^{\prime \prime \prime}}{f^{\prime}}-\frac{3}{2}\left[\frac{f^{\prime \prime}}{f^{\prime}}\right]^{2}$
[1 mark]
As $f_{\mu}^{\prime \prime \prime}=0, f_{\mu}=2$ and $f_{\mu_{*}}^{\prime}\left(x_{*}\right)=-1$, we see that

$$
D_{s}\left\{f_{\mu_{*}}\right\}\left(x_{*}\right)<0
$$

Hence, the flip bifurcation is supercritical [1 mark].
(iv) Bifurcation diagram [3 marks]

