U01875

May 2007 MAT-4-DSy Dynamical Systems

(1) The Hénon dynamical system in \mathbb{R}^2 is defined by

$$\begin{cases} x_{n+1} = a - by_n - x_n^2, \\ y_{n+1} = x_n \end{cases}$$
 (DS),

where $a, b \in \mathbb{R}$ are parameters.

- (a) For which range of values of the parameters a and b does (DS) have two fixed points? /5
- (b) Determine the stability of the linearized system at each fixed point when a = 3, b = -1.
- (c) When a = -3/4 and b = 1, the point $(-\frac{1}{2}, -\frac{1}{2})$ is a fixed point. Does the linearized system determine the stability of this fixed point?
- (d) Continuing with a=-3/4, b=1, introduce the coordinates $u=x+\frac{1}{2}, v=y+\frac{1}{2}$. (DS) is transformed to

$$\begin{cases}
 u_{n+1} &= u_n - v_n - u_n^2, \\
 v_{n+1} &= u_n
 \end{cases}$$
(DS'),

Introduce the complex variable z = cu + v and transform (DS') into the system

$$z_{n+1} = \lambda z_n + \alpha z_n^2 + \beta z_n \bar{z}_n + \gamma \bar{z}_n^2$$
 (CDS)

Determine the constants $c, \lambda, \alpha, \beta$ and γ . /8

(e) Determine the stability of the fixed point z=0 for (CDS). Explain your reasoning.

A helpful formula: $h = \text{Re}\left[\frac{m}{\lambda} + \frac{(2\lambda - 1)\alpha\beta}{\lambda^2(\lambda - 1)}\right] - \frac{1}{2}|\beta|^2 - |\gamma|^2$.

Solution.

(a) (DS) has a fixed point at (x,y) iff $x=a-by-x^2$ and y=x [2 marks] iff y=x and $x^2+(1+b)x-a=$

2

0 [1 mark]. There are two distinct f.p.s iff the discriminant $\Delta^2=(1+b)^2+4a$ is positive [1 mark]. Therefore.

$$a > -\frac{1}{4}(1+b)^2, \quad b \in \mathbb{R}.$$
 [1 mark]

(b) When a=3,b=-1, the fixed points are $x=y=\pm\sqrt{3}$ [1 mark]. The linearized map is

$$df_{(x,y)} = \begin{bmatrix} -2x & -b \\ 1 & 0 \end{bmatrix}.$$
 [1 mark]

We get

$$df_{(\pm\sqrt{3},\pm\sqrt{3})} = \begin{bmatrix} \mp 2\sqrt{3} & 1 \\ 1 & 0 \end{bmatrix}$$
. [1 mark]

The eigenvalues are $\mp(\sqrt{3}\pm2)$ [1 mark]. Thus, the fixed points are saddles, hence unstable [1 mark]

(c) The linearized map at $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ is

$$\left[\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array}\right] \hspace{1cm} \left[\begin{array}{cc} \mathbf{1} & \mathbf{mark} \end{array}\right]$$

which has characteristic polynomial $\lambda^2-\lambda+1$ [1 mark]. The roots are cube roots of -1 -- hence of unit modulus [1 mark]. Therefore, the linearized system does not determine the stability of the nonlinear system [2 marks].

(d) Let g denote the map defined by (DS'). Then $dg_{(0,0)}$ is the matrix in the previous equation $[\mathbf{1} \ \mathbf{mark}]$. Let $\lambda, \bar{\lambda}$ be its eigenvalues with $\lambda = \frac{1}{2} + i \frac{\sqrt{3}}{2}$. The λ -th eigenvector of $A = dg_{(0,0)}^T$ is

$$\begin{bmatrix} -\lambda \\ 1 \end{bmatrix}$$
. [1 mark]

This gives $c=-\lambda$ $[1 \ \mathrm{mark}]$. It follows that $z=(v-\frac{1}{2}u)-i\frac{\sqrt{3}}{2}u$ $[1 \ \mathrm{mark}]$. Thus $u=\frac{i}{\sqrt{3}}(z-\bar{z})=bz+\bar{b}\bar{z}$ and $v=\frac{1}{2}u+\frac{1}{2}(z+\bar{z})=az+\bar{a}\bar{z}$ where $a=\frac{1}{2}+\frac{i}{2\sqrt{3}}$ and $b=\frac{i}{\sqrt{3}}$ $[1 \ \mathrm{mark}]$. Then

$$\begin{split} z_{n+1} &= -\lambda u_{n+1} + v_{n+1}, & [\mathbf{1} \ \mathbf{mark}] \\ &= -\lambda (u_n - v_n - u_n^2) + u_n, \\ &= (1 - \lambda) u_n + \lambda v_n + \lambda u_n^2, \\ &= \lambda (-\lambda) u_n + \lambda v_n + \lambda (b^2 z_n^2 + |b|^2 z \bar{z} + \bar{b}^2 \bar{z}^2), \\ &= \lambda z_n + \lambda b^2 z_n^2 + 2\lambda |b|^2 z \bar{z} + \lambda \bar{b}^2 \bar{z}^2, & [\mathbf{1} \ \mathbf{mark}] \end{split}$$

3

where we have used that $-\lambda^2 = 1 - \lambda$. This proves

 $\begin{array}{rclcrcl} \lambda & = & \frac{1}{2} + i \frac{\sqrt{3}}{2}, & \alpha & = & \lambda b^2 = -\lambda/3, \\ \beta & = & 2\lambda |b|^2 = 2\lambda/3, & \gamma & = & \lambda \bar{b}^2 = -\lambda/3. \end{array}$ [1 mark]

(e) We know that there is a coordinate transformation w = f(z) such that our dynamical system becomes $w_{n+1} =$ $\lambda w_n + q w_n^2 \bar{w}_n + O(|w_n|^4)$ and $|w_{n+1}|^2 = |w_n|^2 + 2h|w_n|^4 +$ $O(|w_n|^5)$, where h is the real part of q/λ [1 mark] The sign of h therefore determines the stability of 0. From the helpful formula, we know that

$$h = \operatorname{Re}\left[\frac{m}{\lambda} + \frac{(2\lambda - 1)\alpha\beta}{\lambda^2(\lambda - 1)}\right] - \frac{1}{2}|\beta|^2 - |\gamma|^2,$$

where m=0 is the coefficient on $z_n^2 \bar{z}_n$. We compute

$$\frac{(2\lambda - 1)\alpha\beta}{\lambda^2(\lambda - 1)} = \frac{i\sqrt{3} \times (-\lambda/3) \times (2\lambda/3)}{-\lambda}$$
$$= \frac{i}{3\sqrt{3}} \times \left(1 + i\sqrt{3}\right)$$
$$= \frac{-1}{3} + i\frac{1}{6\sqrt{3}}.$$

Therefore

$$h = -\frac{1}{3} - \frac{1}{2}|\beta|^2 - |\gamma|^2 < 0.$$

Therefore, the origin is stable [1 mark].

- (2) Let G(x) = 6x(1-x) for $x \in [0,1]$
 - (a) Find the subintervals $I_0 = [0, a]$ and $I_1 = [b, 1]$ of I = [0, 1]such that $G^{-1}(I) = I_0 \cup I_1$.
 - (b) G has two fixed points in I. Indicate their stability. /3
 - (c) Let $\Lambda = \{x \in I : \forall k \geq 0, G^k(x) \in I \}$. Describe Λ in terms of the sets I_0 and I_1 .
 - (d) Let $\Sigma = \{ \omega = (\omega_0, \omega_1, \dots,) : \forall i \geq 0, \ \omega_i \in \{0, 1\} \}.$ Define a metric d on Σ . Prove that the set $U = \{\omega \in \Sigma :$ $\omega_0 = 1, \omega_1 = 0$ } open in the topology of (Σ, d) .
 - (e) Define the 1-sided shift map on two symbols, $\sigma: \Sigma \to \Sigma$.
 - (f) Define an itinerary map, h, for $G|\Lambda$. /1
 - (g) Show that the itinerary map is continuous, 1-1 and onto. [Indicate which, if any, theorems you use in the proof.] /7
 - (h) How many period-2 points does G have? How many prime period-8 points?

Solution.

- (a) We want to find solutions to G(x) = 1 [1 mark]. Thus $6x^2 - 6x + 1 = 0$ or $a = \frac{6 - \sqrt{12}}{12} = \frac{1}{2} - \frac{1}{\sqrt{12}}, b = \frac{1}{2}$ $\frac{6+\sqrt{12}}{12} = \frac{1}{2} + \frac{1}{\sqrt{12}} \, \begin{bmatrix} \mathbf{1} & \mathbf{mark} \end{bmatrix}$.
- (b) We know that the fixed points of G lie in $I_0 \cup I_1$ since they stay in I under an iteration [1 mark]. We know that G'(x) = 6 - 12x so $G'(x) \ge 6 - 12a =$ $\sqrt{12}$ on I_0 [1 mark]. By symmetry, $|G'(x)| \geq \sqrt{12}$ on $I_0 \cup I_1$. Therefore, the fixed points are repellers [1 mark].
- (c) Λ is the set of points in $I_0 \cup I_1$ whose positive orbit lies in $I_0 \cup I_1$ [1 mark].

(d) We define a metric d on Σ by

$$d(\omega, \eta) = \sum_{k=0}^{\infty} \frac{|\omega_k - \eta_k|}{2^k},$$
 [1 mark]

for all $\omega,\eta\in\Sigma$. To prove that U is open in (Σ,d) , it suffices to prove that for all $\omega\in U$, there is a ball of radius r about ω contained in U [1 mark]. Now, if $d(\omega,\eta)<1/2$, then we must have that $\omega_k=\eta_k$ for k=0,1 [1 mark]. This proves that the ball of radius 1/2 about ω is contained in U for any $\omega\in U$. Thus U is open [1 mark].

- (e) For each $\omega \in \Sigma$: $\sigma(\omega)_k = \omega_{k+1}$ for all $k \geq 0$ [2 marks].
- (f) Given $x \in \Lambda$, define the itinerary map h(x) to equal $\omega \in \Sigma$ iff $G^k(x) \in I_{\omega_k}$ for all $k \geq 0$ [1 mark]. Since $I_0 \cap I_1 = \emptyset$, this is well-defined.
- (g) Proof that h is continuous, 1-1 and onto. For each $n \geq 0$ and $\omega \in \Sigma$, define

$$I_{\omega_0,\dots,\omega_n} = \{ x \in I : G^k(x) \in I_{\omega_k} \ \forall k = 0 \dots n \}.$$
 [1 mark]

Let $\mu=\sqrt{12},$ which is a lower bound for |G'| on $I_0\cup I_1.$

CLAIM. $I_{\omega_0,\dots,\omega_n}$ is an interval in I_{ω_0} of length $\leq \mu^{-n}$ for all ω,n [1 mark].

CHECK. If n=0, then the claim follows since $I_{0,1}$ is an interval of length at most $1=\mu^{-0}$. Therefore, assume the claim is true for $\leq n-1$ and all ω . The set $I_{\omega_1,\dots,\omega_n}$ is therefore an interval in I_{ω_1} of length $\leq \mu^{-n+1}$. The set $I_{\omega_0,\dots,\omega_n}$ is therefore the intersection of $G^{-1}(I_{\omega_1,\dots,\omega_n})$ with I_{ω_0} . Since $G|I_{\omega_0}$ is a homeomorphism, we have proven that $I_{\omega_0,\dots,\omega_n}$ is an interval. To prove the claim about the length, if $x,y\in I_{\omega_0,\dots,\omega_n}$, then $|G(x)-G(y)|\leq \mu^{-n+1}$. On the other hand, the MVT plus the lower bound for |G'| gives $|G(x)-G(y)|\geq \mu|x-y|$. Putting the two inequalities together shows that $|x-y|\leq \mu^{-n}$, which proves the claim [2 marks]. CLAIM. h is onto and 1-1.

CHECK. For each $\omega \in \Sigma$, the sets are nested: $I_{\omega_0} \supset I_{\omega_0,\omega_1} \supset \cdots I_{\omega_0,\dots,\omega_n} \supset \cdots$. Since each is compact, their intersection in non-empty. This proves that h is onto. Since the diameter goes to zero, there is a unique point x in their intersection. This proves h is 1-1 $[1 \ \text{mark}]$.

CLAIM. h is continuous.

CHECK. Let $x \in \Lambda$ and let $\omega = h(x)$. Let $\epsilon > 0$ be

6

given. Choose $N>\log_2\epsilon^{-1}$ and let $\delta=6^{-N}$. Let $x'\in\Lambda$ be s.t. $|x-x'|<\delta$. Let $\omega'=h(x')$. The MVT implies that for k< N

$$|G^k(x) - G^k(x')| \le 6^k |x - x'| \le 6^{k-N} \le 6^{-1} < b - a,$$

since $|G'| \le 6$ on I. This implies that

$$x, x' \in \Lambda, |x - x'| < \delta \implies d(h(x), h(x')) < \epsilon.$$

Indeed, if $d(\omega',\omega)>\epsilon$, then there is a smallest $k<\log_2\epsilon^{-1}< N$ s.t. $\omega'_k\neq\omega_k$. Thus, the k-th iterate of x and x' lie in opposite intervals and so they are separated by at least b-a. This does not happen by the above calculation. This proves the continuity of h [2 marks].

(h) Since any periodic point of G must lie in Λ , and h is a bijection, it suffices to count periodic points of the shift map $[\mathbf{2} \quad \mathbf{marks}]$. Let P_n (resp. p_n) be the number of period-n (resp. prime period-n) points for the shift map. We know that

 $P_n = \#\{\text{binary numbers with } n \text{ digits.}\} = 2^n.$ [1 mark]

Thus

$$P_2 = 4$$
.

On the other hand, a period-n point that is not a prime period-n point must also be a periodic point of period k < n, k a divisor of n [1 mark]. For $n = 2^3$, this implies that any non-prime period-8 point is of period 4, so

$$p_8 = P_8 - P_4 = 2^8 - 2^4 = 240.$$
 [1 mark]

(3) Define a dynamical system on \mathbb{R}^2 by

$$\begin{array}{rcl} x_{n+1} & = & 2x_n + 3y_n - (x_n - y_n)^2 \\ y_{n+1} & = & \frac{1}{2}y_n + \frac{1}{2}(x_n - y_n)^2. \end{array} \tag{DS}$$

- (a) Show that the origin is a hyperbolic fixed point of (DS).
- (b) Let $\mathbf{v}_{+} = \begin{pmatrix} * \\ 1 \end{pmatrix}$ (resp. $\mathbf{v}_{-} = \begin{pmatrix} 1 \\ * \end{pmatrix}$) span the stable (resp. unstable) subspace of (0,0). Find \mathbf{v}_{+} and \mathbf{v}_{-} .
- (c) Introduce a system of coordinates (u^+, u^-) adapted to the stable and unstable subspaces. Express (DS) in the form

$$\begin{array}{rcl} u_{n+1}^+ &=& au_n^+ + p_0(u_n^+)^2 + p_1u_n^+u_n^- + p_2(u_n^-)^2 \\ u_{n+1}^- &=& bu_n^- + q_0(u_n^+)^2 + q_1u_n^+u_n^- + q_2(u_n^-)^2 \end{array} \tag{ADS}.$$

Determine the coefficients a, b, p_i, q_j for i, j = 0, 1, 2. /5

- (d) Find the Maclaurin series for W_{loc}^+ and W_{loc}^- , up to second order, in the coordinates (u^+, u^-) .
- (e) Sketch the stable and unstable subspaces and manifolds in the (u^+, u^-) coordinates. Indicate how orbits beginning on the manifolds behave, and how nearby orbits behave. /5

Solution.

(a) The linearization at (0,0) has the matrix

$$\left[\begin{array}{cc} 2 & 3 \\ 0 & 1/2 \end{array}\right] \qquad \qquad \left[\mathbf{1} \ \mathbf{mark}\right]$$

which has eigenvalue 2,1/2 [1 mark].

- (b) The unstable eigenvector is $\mathbf{v}_- = [1,0]^T$ [1 mark]. The stable eigenvector solves $\frac{3}{2}x+3y=0$ [1 mark], so we can choose $\mathbf{v}_+ = [-2,1]^T$ [1 mark].
- (c) We have that $x=u^--2u^+$ and $y=u^+$ [1 mark]. Thus $u^+=y$ and $u^-=x+2y$ and $x-y=u^--3u^+$ [1

8

mark]. (DS) is transformed into

$$\begin{bmatrix} u_{n+1}^+ \\ u_{n+1}^- \end{bmatrix} = \begin{bmatrix} \frac{1}{2}y_n + (x_n - y_n)^2 \\ 2x_n + 3y_n - (x_n - y_n)^2 + 2(\frac{1}{2}y_n + \frac{1}{2}(x_n - y_n)^2) \end{bmatrix}$$
 [1 mark]
$$= \begin{bmatrix} \frac{1}{2}u_n^+ + (3u_n^+ - u_n^-)^2 \\ 2u_n^- \end{bmatrix}$$
 [1 mark]

(d) By inspection $u^-=0$ is invariant, hence $W^+_{loc}=\{(u^+,0)\}$ $[1~{\bf mark}]$. On the other hand, assume that $u^+=g(u^-)=a_2(u^-)^2+\cdots$ is the local unstable manifold expressed as the graph of a function up to second order $[1~{\bf mark}]$. Then

$$u_{n+1}^{+} = \frac{1}{2}u_{n}^{+} + (3u_{n}^{+} - u_{n}^{-})^{2}$$
 using part (c)

$$= \frac{1}{2}g(u_{n}^{-}) + (3g(u_{n}^{-}) - u_{n}^{-})^{2}$$
 using $u^{+} = g(u^{-})$

$$= (\frac{1}{2}a_{2} + 1)(u_{n}^{-})^{2} + \cdots$$
 expanding $g(u^{-})[\mathbf{1} \text{ mark}]$
while.

$$\begin{array}{ll} u_{n+1}^+ = g(u_{n+1}^-) & \text{using invariance of } W_{loc}^+ \\ &= g(2u_n^-) & \text{using part (c)} \\ &= 4a_2(u_n^-)^2 + \cdots & \text{using } g(u^-) = a_2(u^-)^2 + \cdots \text{ [2 marks]} \end{array}$$

We equate coefficients and deduce

$$a_2=rac{2}{7}$$
 [1 mark].

(e) Mark scheme for sketch:

 $W_{loc}^- = \{(2(u^-)^2/7, u^-)\}$

- (i) Correct labels [2 marks].
- (ii) Correct orientation of manifolds [1 mark].

[2 marks].

(iii) Correct arrows [1 mark].

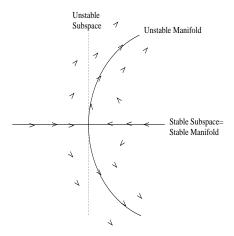


FIGURE 1. The stable and unstable manifolds of (DS).

(4) (a) State Sharkovskii's theorem.

/5

(b) Let $f:[0,1] \to [0,1]$ be a continuous, surjective function whose graph is shown in figure 2. Prove: for each positive integer n, f has a periodic orbit of prime period n. /8

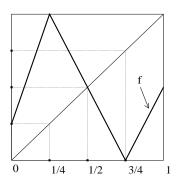


FIGURE 2. $f: [0,1] \to [0,1]$.

(c) Let $x_{n+1} = f_{\mu}(x_n)$ where $f_{\mu}(x) = x + \mu + x^2$ for $x, \mu \in \mathbb{R}$.

10

- (i) Find the fixed points of this dynamical system. /2
- (ii) Find the value of μ for which there is a saddle-node bifurcation.
- (iii) Find the value of μ for which there is a flip bifurcation. Is it super- or sub-critical?
- (iv) Sketch the bifurcation diagram in the (μ, x) plane.

Solution.

(a) Define the an ordering

on the positive integers by [1 mark]

 $3 \lhd 5 \lhd 7 \lhd \cdots \lhd 2 \cdot 3 \lhd 2 \cdot 5 \lhd 2 \cdot 7 \lhd \cdots \lhd 2^n \cdot 3 \lhd 2^n 5 \lhd 2^n 7 \lhd \cdots \cdots \lhd 2^n \lhd \cdots \lhd 2^2 \lhd 2^1 \lhd 2^0,$

 $[2\ marks]$ where we enumerate all odd primes in increasing order, then twice the odd primes, and so on, and finally all powers of 2.

Recall that a point x has prime period n if it is a fixed point of f^n and not of f^k for any k < n [1 mark].

Sharkovskii's Theorem. Let $f:[0,1] \to [0,1]$ be a continuous map. If f has a periodic point of prime period n, then f has a periodic point of prime period k for all $n \lhd k$ [1 mark].

- (b) By Sharkovskii's theorem, it suffices to prove that fhas a periodic point of prime period 3 [1 mark]. Let $I_0 = [0,1/4]$, $I_1 = [1/4,3/4]$ and $I_2 = [3/4,1]$ [1 mark]. By inspection of the graph of fit is clear that fis continuous and
 - (i) $f(I_0) \supset I_1$;
 - (ii) $f(I_1) \supset I_2$;
 - (iii) $f(I_2) \supset I_0$ [1 mark].

Therefore, by the IVT, there are intervals $K_i \subset I_i$ such that

- (i) $f(K_0) = I_1$;
- (ii) $f(K_1) = I_2$;
- (iii) $f(K_2) = K_0 [1 \text{ mark}].$

Consequently, f^3 maps K_0 to itself [1 mark]. Therefore, f^3 has a fixed point in K_0 , call it z [1 mark]. If z does not have prime period 3 for f, then it must

[1

- (c) (i) Solving $f_{\mu}(x)=x$, we get $x=\pm\sqrt{-\mu}$ [1 mark]. Thus, we have a f.p. iff $\mu\leq 0$ [1 mark].
 - (ii) At $\mu=0$, the f.p.s collide and disappear. This is a saddle-node bifurcation $[1 \ mark]$.
 - (iii) There is a flip bifurcation at the parameter μ_* and f.p. x_* if $f'_{\mu_*}(x_*) = -1$ and $f'_{\mu}(x_{\mu})$ passes through -1 at the same time [2 marks]. In this case $f'_{\mu}(x) = 1 + 2x$ which is positive for the positive f.p. and is -1 for the negative f.p. when $x_* = -1$ or $\mu_* = -1$. It is clear that the derivative moves through -1 as μ decreases. Therefore, there is a flip bifurcation only at $\mu_* = -1$ and $x_* = -1$ [2 marks]. To determine super-/sup-criticality, we use the Schwartzian derivative:

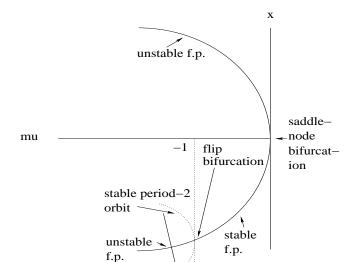
$$D_s\{f\} = \frac{f'''}{f'} - \frac{3}{2} \left[\frac{f''}{f'} \right]^2. \qquad \qquad [\mathbf{1} \ \mathbf{mark}]$$

As $f_{\mu}^{\prime\prime\prime}=$ 0, f_{μ} = 2 and $f_{\mu_*}^{\prime}(x_*)=$ -1, we see that

$$D_s\{f_{\mu_*}\}(x_*) < 0.$$

Hence, the flip bifurcation is supercritical $\left[\max_{k} \right]$.

(iv) Bifurcation diagram [3 marks]



12

FIGURE 3. The bifurcation diagram for f_{μ} .