Uo01875 May 2007 MAT-4-DSy
Dynamical Systems

(1) The Hénon dynamical system in R? is defined by

— _ _ 2
Tpp1 = a—by, $n,} (DS)

Yn+1 = Tn

where a,b € R are parameters.

(a) For which range of values of the parameters a and b does
(DS) have two fixed points? /5

(b) Determine the stability of the linearized system at each

fixed point when a = 3,0 = —1. /5
(c) When a = —3/4 and b = 1, the point (—3,—3) is a fixed
point. Does the linearized system determine the stability
of this fixed point? /5
(d) Continuing with @ = —3/4,b = 1, introduce the coordi-
nates u = + 1,0 =y + . (DS) is transformed to
Upy1 = Up — Up — “ia } (DS’),
Un+1 = Up

Introduce the complex variable z = cu + v and transform
(DS’) into the system

Zngl = Mg + @22 4 B2z, 4+ V32 (CDS)

Determine the constants ¢, A, a, 8 and 7. /8

(e) Determine the stability of the fixed point z = 0 for (CDS).
Explain your reasoning. /2

A helpful formula: 7 = Re ['Aﬂ + (iﬁ(_/\l_)‘fﬂ =3B -
Solution.
(a) (DS) has a fixed point at (z,y) iff x =a— by —2?

and y =z [2 marks] iff y =2 and 2?+(1+b)z—a =
1

()

(c)

(D)

e

0 [1 mark]. There are two distinct f.p.s iff the
discriminant A? = (1+b)’>+4a is positive [1 mark].
Therefore,

a> —%(1—&-6)2, beR. [1 mark]

When a = 3,b = —1, the fixed points are =z =y
+4/3 [1 mark]. The linearized map is

-2z =t
Af ey = [ 1 z O) } [1 mark]
We get
F2V/3 1
df ryzeva) = { 1 0 } . [1 mark]

The eigenvalues are F(v/3+2) [1 mark]. Thus, the
fixed points are saddles, hence unstable [1 mark].
The linearized map at (—3%,—3) is

{ } Bl } (1 mark]
which has characteristic polynomial A2 — X + 1 [1

mark]|. The roots are cube roots of —1 -- hence of

unit modulus [1 mark]. Therefore, the linearized
system does not determine the stability of the nonlinear
system [2 marks].

Let g denote the map defined by (DS’). Then dg(,

is the matrix in the previous equation [1 mark].

Let A\, \ be its eigenvalues with \ = %+z§ The

A-th eigenvector of A= dg@o) is

1

This gives ¢ = —\ [1 mark]. It follows that
z=(v—1u) —i@u [1 mark]. Thus u= %(z—%) =

{ A ] . 1 mark]

bz+bz and v = lu+i(z+%) = az+az where a= %Jrfﬁ
and b= = [1 mark]. Then

—AUpt1 + Uni1, [1 mark]

= My — vy — U2) + Uy,

= (1= Nuy, + M, + M2,

= A=Ay + Ay, + AO222 4 |22z + b252),

= Az + A2 + 2A[b|22Z + A2 22, [1 mark]



(e)

3

where we have used that —A\?>=1-)\. This proves
that

Ly gf3 a = \?=-)\/3,
2AD2=2)/3, v = X?=-)\/3. 1 mark]
We know that there is a coordinate transformation

w = f(z) such that our dynamical system becomes w,i; =
Awy, + qu2 i, + O(Jwy|?) and |wyi1]? = |w,|? + 2h|w, |* +
O(Jwy|®), where h is the real part of ¢/\ [1 mark].
The sign of h therefore determines the stability of
0. From the helpful formula, we know that

m  (2A\—=1)af Lo
| - 3=

h=Re|++ 5+
{)\ A2\ —=1)

where m =0 is the coefficient on 22%,. We compute

that

@A —1)af V3 x (—=A/3) x (2A/3)
NOA-1) Y

Therefore
1 1
h=—=—-|8*-]y*<o0.
3~ 3182 =

Therefore, the origin is stable [1 mark].

(2) Let G(z) = 6x(1 — z) for x € [0, 1].

(a) Find the subintervals Iy = [0,a] and I; = [b, 1] of I = [0, 1]
such that G™X(I) = I, U I;. /2

(b) G has two fixed points in I. Indicate their stability. /3

(c)Let A={x €l : Vk >0, G¥(z) € I }. Describe A in
terms of the sets I, and I;. /1

(d) Let ¥ = {w = (wo,w1,...,) : Vi >0, w € {0,1} }.
Define a metric d on ¥. Prove that the set U = {w € ¥ :
wp = 1,w; = 0} open in the topology of (¥, d). /4

(e) Define the 1-sided shift map on two symbols, o : ¥ — .

/2
(f) Define an itinerary map, h, for G|A. /1

') Show that the itinerary map is continuous, 1-1 and onto.
g y
[Indicate which, if any, theorems you use in the proof.] /7

(h) How many period-2 points does G have? How many prime
period-8 points? /5

Solution.

(a) We want to find solutions to G(z) =1 [1 mark].
Thus 622 — 62+ 1 = 0 or a = 812 — L

12
6+1\;ﬁ =1+ \% [1 mark].
(b) We know that the fixed points of G lie in Iy U [}
since they stay in [ under an iteration [1 mark].
We know that G'(z) = 6 — 12z so G'(x) > 6 — 12a =

V12 on Iy [1 mark]. By symmetry, |G'(z)] > V12

, b=

[NIE

|

on [pUl;. Therefore, the fixed points are repellers

[1 mark].

(c) A is the set of points in IyUI; whose positive orbit

lies in JoUI; [1 mark].



(d)

(e)

(£

We define a metric d on ¥ by
o o — il
d(w,n) = Z o (1 mark]
k=0

for all w,p€X. To prove that U is open in (X,d),
it suffices to prove that for all w € U, there is

a ball of radius r about w contained in U [1 mark].
Now, if d(w,n) < 1/2, then we must have that wj =

n, for k=0,1 [1 mark]. This proves that the ball
of radius 1/2 about w is contained in U for any w €
U. Thus U is open [1 mark].

For each w € ¥: o(w)y = wgy for all k > 0 [2
marks].

Given z € A, define the itinerary map h(z) to equal
w € X iff G¥) € I, for all k > 0 [1 mark].
Since IyNI; =0, this is well-defined.

Proof that h is continuous, 1-1 and onto. For each
n >0 and w € Y, define

{zel : G*@x)el, YVk=0...n }. (1 mark]

Let p=+/12, which is a lower bound for |G| on IyU

I].

CLAIM. I, ., is an interval in I, of length < pu™
for all w,n [1 mark].

CHECK. If n =0, then the claim follows since [,

is an interval of length at most 1=y °. Therefore,
assume the claim is true for <n—1 and all w. The
set I, .., is therefore an interval in I/, of length

< p . The set L.....o, is therefore the intersection
of GY(I,,. ..) with I, . Since G|l is a homeomorphism,
we have proven that I, .., is an interval. To prove
the claim about the length, if z,y € ]wu,...,wn: then

|G(z) — G(y)] < p~™*'. On the other hand, the MVT

plus the lower bound for |G| gives |G(z)—G(y)| >
p|z—y|. Putting the two inequalities together shows
that |x—y| < u™", which proves the claim [2 marks].
CLAIM. h is onto and 1-1.

CHECK. For each w € X, the sets are nested: [, D
Logun D gy, D oo Since each is compact,
their intersection in non-empty. This proves that

h is onto. Since the diameter goes to zero, there

is a unique point z in their intersection. This proves
h is 1-1 [1 mark].

CLAIM. h is continuous.

CHECK. Let = € A and let w = h(z). Let € > 0 be

6V, Let

given. Choose N > log,e™! and let § .
h(z'). The

€ Abes.t. [x—2 <. Let w
MVT implies that for k< N

|G* (@) = G*(a)| < 6"w — 2’| < 6"V <67 <b—aq,

z, 7 €Nz —a| <§ =

(h)

since |G| <6 on I. This implies that

d(h(z),h(z")) <e.

Indeed, if d(w',w) > €, then there is a smallest k <
log,e ' < N s.t. w,#w,. Thus, the k-th iterate

of x and z’ lie in opposite intervals and so they

are separated by at least b—a. This does not happen
by the above calculation. This proves the continuity
of h [2 marks].

Since any periodic point of G must lie in A, and

h is a bijection, it suffices to count periodic points
of the shift map [2 marks]. Let P, (resp. p,)

be the number of period-n (resp. prime period-n)
points for the shift map. We know that

P, = #{binary numbers with n digits.} = 2". [1 mark]

Thus

P2:4.
On the other hand, a period-n point that is not a
prime period-n point must also be a periodic point
of period k<n, k a divisor of n [1 mark]. For
n = 2%, this implies that any non-prime period-8
point is of period 4, so

ps = Py — Py = 2% — 2% = 240. [1 mark]



(3) Define a dynamical system on R? by

Tpt1 = 22y + 3Yn — (flfn - yn>2 DS
Yn+1 %yn + %(‘Tn - yn)z- ( )

(a) Show that the origin is a hyperbolic fixed point of (DS).

/2

(b) Letvy = (]
unstable) subspace of (0,0). Find v, and v_. /3

(resp. v_ = ( i )) span the stable (resp.

(¢) Introduce a system of coordinates (u*,u™) adapted to the
stable and unstable subspaces. Express (DS) in the form

ubn = a4 po(u)? + prtug + pafuy)? (ADS)
Uy = buy + a0 + it + ao(u ) |

Determine the coefficients a, b, p;, ¢; for i,j =0,1,2. /5

(d) Find the Maclaurin series for W, and W, up to second

order, in the coordinates (u™,u™). /10

(e) Sketch the stable and unstable subspaces and manifolds in
the (u*,u™) coordinates. Indicate how orbits beginning on
the manifolds behave, and how nearby orbits behave. /5

Solution.

(a) The linearization at (0,0) has the matrix

{ (2) 1?2 } [1 mark]
which has eigenvalue 2,1/2 [1 mark].

(b) The unstable eigenvector is v_ = [1,0]7 [1 mark].
The stable eigenvector solves 2z+3y =0 [1 mark],
so we can choose v, = [-2,1]7 [1 mark].

(c) We have that # = u~ —2u" and y = u™ [1 mark].

Thus v™ =y and v~ =2 +2y and z—y=u" —3u" [1

mark]. (DS) is transformed into

%yn + (xn - yn)2

Upt+1 —
|: u7:+1 :| |: QITL + Byn - (In - yn)z + 2(%[% + %('rTL - yn)Q) :|
Luf + (B8uf - up)?
2u,,
(d) By inspection w~ = 0 is invariant, hence W} =
{(u™,0)} [1 mark]. On the other hand, assume that
ut = g(u”) = as(u")? + --- is the local unstable

manifold expressed as the graph of a function up to
second order [1 mark]. Then

1
ut, = iu,f + (But —uy)? using part (c)
1, _ _ . _
= gg(un) + (3g(uy) — uy)? using ut = g(u”)
1
= (5(1,2 +D)(uy) + - expanding g(u™)[1 mark]
while,
uly = g(uyq) using invariance of W},
= g(2u,) using part (c)
= dag(u; )2 4 - using g(u~) = ag(u™)? + -+ - [2 marks]
We equate coefficients and deduce
2
ay = = [1 mark].
Thus,
Wi = {(2(u™)?/7,u7)} [2 marks].

(e) Mark scheme for sketch:
(i) Correct labels [2 marks].
(ii) Correct orientation of manifolds [1 mark].
(iii) Correct arrows [1 mark].

[1 mark]

[1 mark]
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FIGURE 1. The stable and unstable manifolds of (DS).
(4) (a) State Sharkovskii’s theorem. /5

(b) Let f: [0,1] — [0,1] be a continuous, surjective function
whose graph is shown in figure 2. Prove: for each positive
integer n, f has a periodic orbit of prime period n. /8

A\
/ f

0 U4 12 3/4

FIGURE 2. f: [0,1] — [0, 1].

(c) Let 211 = fu(2n) where f,(z) =2+ p+ 2% for z,p € R.

10

(i) Find the fixed points of this dynamical system. /2

(ii) Find the value of y for which there is a saddle-node
bifurcation. /1

(ili) Find the value of p for which there is a flip bifurca-
tion. Is it super- or sub-critical? /6

(iv) Sketch the bifurcation diagram in the (u, z) plane.

/3

Solution.

(a)

31547 - -

()

Define the an ordering <1 on the positive integers
by [1 mark]

<2:3<12:5<2:7<- - -<12%-3<12"5 <127 T <+ -+ -+ - 2" - -<12292t<20,

[2 marks| where we enumerate all odd primes in increasing
order, then twice the odd primes, and so on, and finally
all powers of 2.

Recall that a point z has prime period n if it is

a fixed point of f" andnot of f¥ for any k<n [l

mark].

Sharkovskii’s Theorem. Let f :[0,1] — [0,1] be a
continuous map. If f has a periodic point of prime
period n, then f has a periodic point of prime period

k for all n<k [1 mark].

By Sharkovskii’s theorem, it suffices to prove that
fhas a periodic point of prime period 3 [1 mark].
Let Ip = [0,1/4], I = [1/4,3/4] and I, = [3/4,1] [1
mark]|. By inspection of the graph of fit is clear
that fis continuous and

(1) f(Io) D It;

(ii) (L) D Iy;
(iii) f(Ir) D Iy [1 mark].
Therefore, by the IVT, there are intervals K; C I;
such that

(1) f(Kg) = ]1;

(1) f(Ky) = I;
(iii) f(K») = Ko [1 mark].
Consequently, f% maps K, to itself [1 mark]. Therefore,
f3 has a fixed point in Kj, call it z [l mark].

If z does not have prime period 3 for f, then it must



()

11

be a fixed point of f [1 mark]. Then z=1{(z) so

z must lie in both K, and K;, and z = f2(2) so z

must lie in K; and K5, too. But Ky C Iy and K, C

I, are disjoint [1 mark]. Absurd. Therefore, z

has prime period 3. QED

(i) Solving fu(z) =z, we get x =+\/—u [1 mark].

Thus, we have a f.p. iff x <0 [1 mark].

(ii) At 4 =0, the f.p.s collide and disappear. This
is a saddle-node bifurcation [1 mark].

(iii) There is a flip bifurcation at the parameter
i and £.p. z, if f; (v.) = —1 and f;(z,) passes
through —1 at the same time [2 marks]. In
this case f/(v)=1+27 which is positive for
the positive f.p. and is —1 for the negative
f.p. when z, = -1 or pu, = —1. It is clear
that the derivative moves through —1 as p decreases.
Therefore, there is a flip bifurcation only at
e =—1 and z,=—1 [2 marks].
To determine super-/sup-criticality, we use the
Schwartzian derivative:

" 3 f” 2
DJf} = T {7} . [1 mark]
As f' =0, f, = 2 and f; (v.) = —1, we see
that

Dy{fu. }(z:) <O0.
Hence, the flip bifurcation is supercritical [1
mark].

(iv) Bifurcation diagram [3 marks]

12
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FIGURE 3. The bifurcation diagram for f,.



