M4 Dynamical Systems

May 2006 — Questions

 $2~{\rm hours};$ best $3~{\rm answers}$ count.

M445/M06

Dynamical Systems

1. Consider the recurrence relation

$$x_{n+2} = \frac{7}{16}x_n + \frac{3}{2}x_{n+1} + x_n^2,$$

where $x_i \in \mathbb{R} \ (i = 0, 1, 2, ...).$

- (a) Find the fixed points of this recurrence relation.
- (b) Determine the nature of the fixed point at the (x, y) origin of the corresponding \mathbb{R}^2 system in which $y_n = x_{n+1}$.
- (c) Give the definitions of the stable and unstable subspaces of the origin.
- (d) Let $\begin{pmatrix} 1 \\ \alpha \end{pmatrix}$ and $\begin{pmatrix} 1 \\ \beta \end{pmatrix}$ be vectors aligned with the stable and unstable subspaces, respectively. Find the constants α and β , and write down the equations of the stable and unstable subspaces.
- (e) Introduce the vector $\begin{pmatrix} u_n^+ \\ u_n^- \end{pmatrix}$ which is defined via $\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \alpha & \beta \end{pmatrix} \begin{pmatrix} u_n^+ \\ u_n^- \end{pmatrix}.$

Thereby, show that the system may be expressed in the form

$$u_{n+1}^{+} = c_1 u_n^{+} + c_2 (u_n^{+})^2 + c_3 (u_n^{+} u_n^{-}) + c_4 (u_n^{-})^2,$$

$$u_{n+1}^{-} = d_1 u_n^{-} + d_2 (u_n^{+})^2 + d_3 (u_n^{+} u_n^{-}) + d_4 (u_n^{-})^2;$$

and evaluate the constants $c_{1,\ldots,4}$ and $d_{1,\ldots,4}$.

- (f) State the stable manifold theorem.
- (g) Find the quadratic approximations to the stable and unstable manifolds in the (u^+, u^-) plane.
- (h) Sketch the stable and unstable manifolds in the (u^+, u^-) plane. Include in your sketch a few representative orbits and identify the stable and unstable subspaces.

Dynamical Systems

2. Consider the mapping $x_{n+1} = G(x_n)$ with

$$G(x) = 2\pi \sin x \, ,$$

for $x \in [0, \pi]$.

- (a) Let $I_1 = [0, a]$ and $I_2 = [b, \pi]$ with a < b. Find the largest value of a and smallest value of b such that G maps $I_1 \cup I_2$ onto $[0, \pi]$.
- (b) Briefly discuss the stability of the fixed points of G. (You are not required to locate exactly the fixed points).
- (c) Describe the invariant set $S = \{x \in [0, \pi] : G^k(x) \in [0, \pi], k \in \mathbb{N}\}$ in terms of I_1 and I_2 .
- (d) Give the definition of the itinerary map which forms the basis of the symbolic dynamics on S for G(x).
- (e) Show that the itinerary map is
 - i. surjective (the *Nested Intervals Theorem* may be assumed);
 - ii. injective.
- (f) How many prime period–6 orbits for G are in S? How many prime period–8 orbits for G are in S? Justify your answers.
- (g) Show that the Liapunov exponent λ for G acting on S has the lower bound

$$\lambda \ge \ln \pi + \frac{\ln 3}{2}.$$

What can you infer from this?

M445/M06

Dynamical Systems

- 3. (a) Prove that if a continuous \mathbb{R}^1 mapping has a period-3 orbit then it has prime period-*n* orbits for all $n \in \mathbb{N}$. (The *Intermediate Value Theorem* may be assumed).
 - (b) Consider the \mathbb{R}^1 mapping $x_{n+1} = H_{\mu}(x_n)$ where

$$H_{\mu}(x) = \mu\left(\frac{1}{2} - \left|x - \frac{1}{2}\right|\right),$$

and $\mu > 0$.

- i. For both $\mu > 1$ and $\mu < 1$, find the fixed points of $H_{\mu}(x)$ and discuss their stability.
- ii. Let $\mu = 2$.
 - A. Find the orbit which starts at $x_0 = 2/7$. What can you infer from this?
 - B. By considering the graph of the iterated map $H_2 \circ H_2$ or otherwise, find a period-2 orbit.

M445/M06

Dynamical Systems

4. (a) Consider the \mathbb{R}^1 mapping $x_{n+1} = F_{\nu}(x_n)$ where

$$F_{\nu}(x) = \nu x \exp(-x) \,,$$

with $\nu \in \mathbb{R}$.

- i. Find all the fixed points of F_{ν} .
- ii. Determine the stability of the fixed points.
- iii. Sketch the corresponding bifurcation diagram in the (ν, x) plane. Indicate the stability of the fixed points on your sketch.
- iv. Does F_{ν} undergo subcritical flip bifurcations? Justify your answer.
- v. Does the iterated mapping $F_{\nu} \circ F_{\nu}$ undergo subcritical flip bifurcations? Justify your answer. (Properties of the Schwarzian derivative presented in the lectures may be assumed).
- (b) Consider the 2–dimensional continuous system governed by

$$\left. \begin{array}{c} \dot{r} = r(1 - r^2) \\ \dot{\theta} = 1 \end{array} \right\},\$$

where $r(t) \in \Sigma$ and $\theta(t) > 0$ are the time-dependent plane polar coordinates, and Σ is the open unit interval (0, 1). The trajectory which starts at

$$\left. \begin{array}{c} r(0) = r_0 \\ \theta(0) = 0 \end{array} \right\},$$

next crosses Σ at r_1 .

i. Show that r_1 satisfies

$$\int_{r_0}^{r_1} \frac{1}{r(1-r^2)} \, dr = 2\pi.$$

ii. Hence find the corresponding Poincaré map $P: \Sigma \to \Sigma$ such that $P(r_0) = r_1$.

[End of Paper]

Notes on Dynamical Systems questions

- Question 1: Parts (c) and (f) are bookwork. The other parts are standard similar to tutorial questions.
- Question 2: We went through a similar example in class using the logistic map. The proofs required in part (e) are very similar to those given in class.
- Question 3: Part (a) is bookwork. Part (b) is a standard calculation similar to tutorial questions.
- Question 4: Standard calculation similar to tutorial questions.