May 2006 - Questions
2 hours; best 3 answers count.

1. Consider the recurrence relation

$$
x_{n+2}=\frac{7}{16} x_{n}+\frac{3}{2} x_{n+1}+x_{n}^{2},
$$

where $x_{i} \in \mathbb{R}(i=0,1,2, \ldots)$.
(a) Find the fixed points of this recurrence relation.
(b) Determine the nature of the fixed point at the (x, y) origin of the corresponding \mathbb{R}^{2} system in which $y_{n}=x_{n+1}$.
(c) Give the definitions of the stable and unstable subspaces of the origin
(d) Let $\binom{1}{\alpha}$ and $\binom{1}{\beta}$ be vectors aligned with the stable and unstable subspaces, respectively. Find the constants α and β, and write down the equations of the stable and unstable subspaces.
(e) Introduce the vector $\binom{u_{n}^{+}}{u_{n}^{-}}$which is defined via

$$
\binom{x_{n}}{y_{n}}=\left(\begin{array}{cc}
1 & 1 \\
\alpha & \beta
\end{array}\right)\binom{u_{n}^{+}}{u_{n}^{-}}
$$

Thereby, show that the system may be expressed in the form

$$
\begin{aligned}
& u_{n+1}^{+}=c_{1} u_{n}^{+}+c_{2}\left(u_{n}^{+}\right)^{2}+c_{3}\left(u_{n}^{+} u_{n}^{-}\right)+c_{4}\left(u_{n}^{-}\right)^{2} \\
& u_{n+1}^{-}=d_{1} u_{n}^{-}+d_{2}\left(u_{n}^{+}\right)^{2}+d_{3}\left(u_{n}^{+} u_{n}^{-}\right)+d_{4}\left(u_{n}^{-}\right)^{2}
\end{aligned}
$$

and evaluate the constants $c_{1, \ldots, 4}$ and $d_{1, \ldots, 4}$.
(f) State the stable manifold theorem.
(g) Find the quadratic approximations to the stable and unstable manifolds in the $\left(u^{+}, u^{-}\right)$plane.
(h) Sketch the stable and unstable manifolds in the $\left(u^{+}, u^{-}\right)$plane. Include in your sketch a few representative orbits and identify the stable and unstable subspaces.
2. Consider the mapping $x_{n+1}=G\left(x_{n}\right)$ with

$$
G(x)=2 \pi \sin x,
$$

for $x \in[0, \pi]$.
(a) Let $I_{1}=[0, a]$ and $I_{2}=[b, \pi]$ with $a<b$. Find the largest value of a and smallest value of b such that G maps $I_{1} \cup I_{2}$ onto $[0, \pi]$.
(b) Briefly discuss the stability of the fixed points of G.
(You are not required to locate exactly the fixed points).
(c) Describe the invariant set $S=\left\{x \in[0, \pi]: G^{k}(x) \in[0, \pi], k \in \mathbb{N}\right\}$ in terms of I_{1} and I_{2}.
(d) Give the definition of the itinerary map which forms the basis of the symbolic dynamics on S for $G(x)$.
(e) Show that the itinerary map is
i. surjective (the Nested Intervals Theorem may be assumed);
ii. injective.
(f) How many prime period- 6 orbits for G are in S ? How many prime period- -8 orbits for G are in S ? Justify your answers.
(g) Show that the Liapunov exponent λ for G acting on S has the lower bound

$$
\lambda \geq \ln \pi+\frac{\ln 3}{2} .
$$

What can you infer from this?
3. (a) Prove that if a continuous \mathbb{R}^{1} mapping has a period-3 orbit then it has prime period- n orbits for all $n \in \mathbb{N}$. (The Intermediate Value Theorem may be assumed).
(b) Consider the \mathbb{R}^{1} mapping $x_{n+1}=H_{\mu}\left(x_{n}\right)$ where

$$
H_{\mu}(x)=\mu\left(\frac{1}{2}-\left|x-\frac{1}{2}\right|\right)
$$

and $\mu>0$.
i. For both $\mu>1$ and $\mu<1$, find the fixed points of $H_{\mu}(x)$ and discuss their stability.
ii. Let $\mu=2$.
A. Find the orbit which starts at $x_{0}=2 / 7$.

What can you infer from this?
B. By considering the graph of the iterated map $H_{2} \circ H_{2}$ or otherwise, find a period-2 orbit.

Notes on Dynamical Systems questions

- Question 1: Parts (c) and (f) are bookwork. The other parts are standard - similar to tutorial questions
- Question 2: We went through a similar example in class using the logistic map. The proofs required in part (e) are very similar to those given in class.
- Question 3: Part (a) is bookwork. Part (b) is a standard calculation - similar to tutorial questions
- Question 4: Standard calculation - similar to tutorial questions.

