M4 Dynamical Systems

May 2006 — Questions and Answers

M445/M06

Dynamical Systems

1. Consider the recurrence relation

$$x_{n+2} = \frac{7}{16}x_n + \frac{3}{2}x_{n+1} + x_n^2,$$

where $x_i \in \mathbb{R} \ (i = 0, 1, 2, ...).$

- (a) Find the fixed points of this recurrence relation.
- (b) Determine the nature of the fixed point at the (x, y) origin of the corresponding \mathbb{R}^2 system in which $y_n = x_{n+1}$.
- (c) Give the definitions of the stable and unstable subspaces of the origin.
- (d) Let $\begin{pmatrix} 1 \\ \alpha \end{pmatrix}$ and $\begin{pmatrix} 1 \\ \beta \end{pmatrix}$ be vectors aligned with the stable and unstable subspaces, respectively. Find the constants α and β , and write down the equations of the stable and unstable subspaces.

(e) Introduce the vector
$$\begin{pmatrix} u_n^+ \\ u_n^- \end{pmatrix}$$
 which is defined via
 $\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \alpha & \beta \end{pmatrix} \begin{pmatrix} u_n^+ \\ u_n^- \end{pmatrix}.$

Thereby, show that the system may be expressed in the form

$$u_{n+1}^{+} = c_1 u_n^{+} + c_2 (u_n^{+})^2 + c_3 (u_n^{+} u_n^{-}) + c_4 (u_n^{-})^2,$$

$$u_{n+1}^{-} = d_1 u_n^{-} + d_2 (u_n^{+})^2 + d_3 (u_n^{+} u_n^{-}) + d_4 (u_n^{-})^2;$$

and evaluate the constants $c_{1,\dots,4}$ and $d_{1,\dots,4}$.

- (f) State the stable manifold theorem.
- (g) Find the quadratic approximations to the stable and unstable manifolds in the (u^+, u^-) plane.
- (h) Sketch the stable and unstable manifolds in the (u^+, u^-) plane. Include in your sketch a few representative orbits and identify the stable and unstable subspaces.

Solution.

(a) The fixed points $x = x^*$ satisfy

$$x^* = \frac{7}{16}x^* + \frac{3}{2}x^* + (x^*)^2$$
 i.e., $x^*\left(x^* + \frac{15}{16}\right) = 0$

so we have $x^* = 0$ and $x^* = -15/16$.

(b) We have

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \mathbf{F} \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} y_n \\ \frac{7}{16}x_n + \frac{3}{2}y_n + x_n^2 \end{pmatrix}.$$

The Jacobian matrix:

$$D\mathbf{F} = \begin{pmatrix} 0 & 1\\ \frac{7}{16} + 2x_n & \frac{3}{2} \end{pmatrix} \qquad \Rightarrow \qquad D\mathbf{F}|_{\mathbf{0}} = \begin{pmatrix} 0 & 1\\ \frac{7}{16} & \frac{3}{2} \end{pmatrix} = A.$$

The eigenvalues $\lambda = \lambda_{1,2}$ of A are given by

$$(0-\lambda)\left(\frac{3}{2}-\lambda\right)-\frac{7}{16}=0,$$
 i.e., $\left(\lambda-\frac{7}{4}\right)\left(\lambda+\frac{1}{4}\right)=0;$

thus, we have $\lambda_1 = -1/4$ and $\lambda_2 = 7/4$. Since $|\lambda_1| < 1$ and $|\lambda_2 > 1$, the fixed point at x = 0, y = 0 is a saddle point.

(c) The stable subspace E^+ is the span of eigenvectors associated with eigenvectors λ with $|\lambda| < 1$. The unstable subspace E^- is the span of eigenvectors associated with eigenvectors λ with $|\lambda| > 1$.

(d) The eigenvector $\begin{pmatrix} e_{x1} \\ e_{y1} \end{pmatrix}$ associated with λ_1 is given via

$$\begin{pmatrix} 0 & 1\\ \frac{7}{16} & \frac{3}{2} \end{pmatrix} \begin{pmatrix} e_{x1}\\ e_{y1} \end{pmatrix} = -\frac{1}{4} \begin{pmatrix} e_{x1}\\ e_{y1} \end{pmatrix}, \quad \text{i.e.,} \quad \begin{pmatrix} e_{x1}\\ e_{y1} \end{pmatrix} = \begin{pmatrix} 1\\ -\frac{1}{4} \end{pmatrix}, \text{ say;}$$

and the eigenvector $\begin{pmatrix} e_{x2} \\ e_{y2} \end{pmatrix}$ associated with λ_2 is given via

$$\begin{pmatrix} 0 & 1\\ \frac{7}{16} & \frac{3}{2} \end{pmatrix} \begin{pmatrix} e_{x2}\\ e_{y2} \end{pmatrix} = \frac{7}{4} \begin{pmatrix} e_{x2}\\ e_{y2} \end{pmatrix}, \quad \text{i.e.,} \quad \begin{pmatrix} e_{x2}\\ e_{y2} \end{pmatrix} = \begin{pmatrix} 1\\ \frac{7}{4} \end{pmatrix}, \text{ say.}$$

Hence, E^+ is the line $y = -\frac{1}{4}x$, and E^- is the line $y = \frac{7}{4}x$.

(e) We have
$$S = \begin{pmatrix} 1 & 1 \\ -\frac{1}{4} & \frac{7}{4} \end{pmatrix}$$
 with
 $\begin{pmatrix} u_n^+ \\ u_n^- \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{7}{4} & -1 \\ \frac{1}{4} & 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} = \frac{1}{2} \begin{pmatrix} \frac{7}{4}x_n - y_n \\ \frac{1}{4}x_n + y_n \end{pmatrix}$
(1)

and

$$\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ -\frac{1}{4} & \frac{7}{4} \end{pmatrix} \begin{pmatrix} u_n^+ \\ u_n^- \end{pmatrix} = \begin{pmatrix} u_n^+ + u_n^- \\ -\frac{1}{4}u_n^+ + \frac{7}{4}u_n^- \end{pmatrix}.$$
 (2)

Now, using eqn (1), we can re-write $x_{n+1} = y_n$ as

$$u_{n+1}^{+} + u_{n+1}^{-} = -\frac{1}{4}u_{n}^{+} + \frac{7}{4}u_{n}^{-};$$
(3)

and, using eqn (2), we can re-write $y_{n+1} = \frac{7}{16}x_n + \frac{3}{2}y_n + x_n^2$ as

$$-\frac{1}{4}u_{n+1}^{+} + \frac{7}{4}u_{n+1}^{-} = \frac{7}{16}\left(u_{n}^{+} + u_{n}^{-}\right) + \frac{3}{2}\left(-\frac{1}{4}u_{n}^{+} + \frac{7}{4}u_{n}^{-}\right) + \left(u_{n}^{+} + u_{n}^{-}\right)^{2}$$
$$= \frac{1}{16}u_{n}^{+} + \frac{49}{16}u_{n}^{-} + \left(u_{n}^{+} + u_{n}^{-}\right)^{2}.$$
(4)

Taking $\frac{7}{4}(3)$ - (4) gives:

$$2u_{n+1}^{+} = -\frac{7}{16}u_{n}^{+} + \frac{49}{16}u_{n}^{-} - \frac{1}{16}u_{n}^{+} - \frac{49}{16}u_{n}^{-} - \left(u_{n}^{+} + u_{n}^{-}\right)^{2}$$

i.e., $u_{n+1}^{+} = -\frac{1}{4}u_{n}^{+} - \frac{1}{2}\left(u_{n}^{+} + u_{n}^{-}\right)^{2};$ (5)

i.e., we have $c_1 = -\frac{1}{4}$, $c_2 = -\frac{1}{2}$, $c_3 = -1$ and $c_4 = -\frac{1}{2}$. Similarly, taking $\frac{1}{4}(3) + (4)$ gives:

$$2u_{n+1}^{-} = -\frac{1}{16}u_{n}^{+} + \frac{7}{16}u_{n}^{-} + \frac{1}{16}u_{n}^{+} + \frac{49}{16}u_{n}^{-} + \left(u_{n}^{+} + u_{n}^{-}\right)^{2}$$

i.e., $u_{n+1}^{-} = \frac{7}{4}u_{n}^{-} + \frac{1}{2}\left(u_{n}^{+} + u_{n}^{-}\right)^{2};$ (6)

i.e., we have $d_1 = \frac{7}{4}$, $d_2 = \frac{1}{2}$, $d_3 = 1$ and $d_4 = \frac{1}{2}$.

(f) The stable manifold theorem asserts the existence of (i) an invariant stable manifold W^s defined by $\{\mathbf{x} : \mathbf{F}^k(\mathbf{x}) \to \mathbf{0} \text{ as } k \to \infty\}$; and (ii) an invariant unstable manifold W^u defined by $\{\mathbf{x} : \mathbf{F}^k(\mathbf{x}) \to \mathbf{0} \text{ as } k \to -\infty\}$.

(g) Consider the quadratic expansion of the stable manifold: $u^{-} = a_2 (u^{+})^2$. We have

$$u_{n+1}^{-} = a_2 \left(u_{n+1}^{+}\right)^2$$

= $a_2 \left[-\frac{1}{4}u_n^{+} - \frac{1}{2}\left(u_n^{+} + u_n^{-}\right)^2\right]^2$ from eqn (5)
= $a_2 \left[\frac{1}{16}\left(u_n^{+}\right)^2 + \frac{1}{4}u_n^{+}\left(u_n^{+} + u_n^{-}\right)^2 + \frac{1}{4}\left(u_n^{+} + u_n^{-}\right)^4\right]$
 $\approx a_2 \frac{1}{16}\left(u_n^{+}\right)^2$ (neglecting cubic and higher-order terms). (7)

Also, recalling eqn (6), we have

$$u_{n+1}^{-} = \frac{7}{4} a_2 \left(u_n^{+}\right)^2 + \frac{1}{2} \left[u_n^{+} + a_2 \left(u_n^{+}\right)^2\right]^2 \\ \approx \left(\frac{7}{4} a_2 + \frac{1}{2}\right) \left(u_n^{+}\right)^2 \qquad \text{(neglecting cubic and higher-order terms).} \tag{8}$$

Comparing eqns (7) and (8), we find

$$a_2 \frac{1}{16} = \frac{7}{4}a_2 + \frac{1}{2},$$
 i.e., $a_2 = -\frac{8}{27}.$

Consider the quadratic expansion of the unstable manifold: $u^+ = b_2 (u^-)^2$. We have

$$u_{n+1}^{+} = b_{2} \left(u_{n+1}^{-} \right)^{2}$$

$$= b_{2} \left[\frac{7}{4} u_{n}^{-} + \frac{1}{2} \left(u_{n}^{+} + u_{n}^{-} \right)^{2} \right]^{2} \qquad \text{from eqn (6)}$$

$$= b_{2} \left[\frac{49}{16} \left(u_{n}^{-} \right)^{2} + \frac{7}{4} u_{n}^{-} \left(u_{n}^{+} + u_{n}^{-} \right)^{2} + \frac{1}{4} \left(u_{n}^{+} + u_{n}^{-} \right)^{4} \right]$$

$$\approx b_{2} \frac{49}{16} \left(u_{n}^{-} \right)^{2} \qquad \text{(neglecting cubic and higher-order terms).} \qquad (9)$$

Also, recalling eqn (5), we have

$$u_{n+1}^{+} = -\frac{1}{4}b_{2}\left(u_{n}^{-}\right)^{2} - \frac{1}{2}\left[u_{n}^{-} + b_{2}\left(u_{n}^{-}\right)^{2}\right]^{2} \\ \approx \left(-\frac{1}{4}b_{2} - \frac{1}{2}\right)\left(u_{n}^{-}\right)^{2} \qquad (\text{neglecting cubic and higher-order terms}).$$
(10)

Comparing eqns (9) and (10), we find

$$b_2 \frac{49}{16} = -\frac{1}{4}b_2 - \frac{1}{2},$$
 i.e., $b_2 = -\frac{8}{53}.$

(h) Sketch see figure 1:

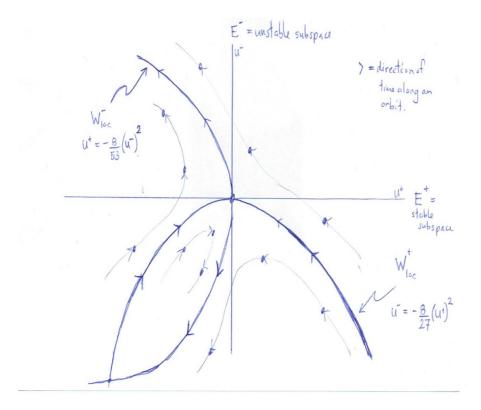


Figure 1: Stable and unstable manifolds.

2. Consider the mapping $x_{n+1} = G(x_n)$ with

$$G(x) = 2\pi \sin x$$

for $x \in [0, \pi]$.

- (a) Let $I_1 = [0, a]$ and $I_2 = [b, \pi]$ with a < b. Find the largest value of a and smallest value of b such that G maps $I_1 \cup I_2$ onto $[0, \pi]$.
- (b) Briefly discuss the stability of the fixed points of G. (You are not required to locate exactly the fixed points).
- (c) Describe the invariant set $S = \{x \in [0, \pi] : G^k(x) \in [0, \pi], k \in \mathbb{N}\}$ in terms of I_1 and I_2 .
- (d) Give the definition of the itinerary map which forms the basis of the symbolic dynamics on S for G(x).
- (e) Show that the itinerary map is
 - i. surjective (the *Nested Intervals Theorem* may be assumed);ii. injective.
- (f) How many prime period-6 orbits for G are in S? How many prime period-8 orbits for G are in S? Justify your answers.

(g) Show that the Liapunov exponent λ for G acting on S has the lower bound

$$\lambda \ge \ln \pi + \frac{\ln 3}{2}.$$

What can you infer from this?

Solution.

(a) $\sin \frac{\pi}{6} = \sin \frac{5\pi}{6} = \frac{1}{2} \implies a = \frac{\pi}{6} \text{ and } b = \frac{5\pi}{6}$

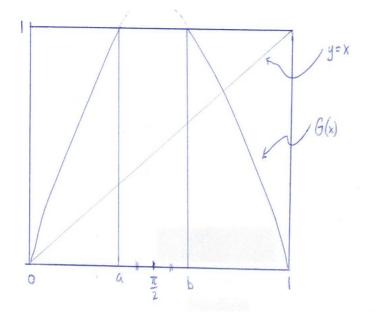


Figure 2: Graph of $G(x) = 2\pi \sin(x)$.

(b) From the sketch (see figure 2) there are two fixed points: $x_i = 0$ and $x_{ii} \in (\frac{5\pi}{6}, \pi)$.

$$\begin{aligned} G'(0) &= 2\pi \cos 0 = 2\pi \quad \Rightarrow \quad |G'(x_i)| > 1 \\ &\Rightarrow \quad x_i \text{ is unstable} \\ G'(\frac{5\pi}{6}) &= 2\pi \cos \frac{5\pi}{6} = -\sqrt{3}\pi \quad \Rightarrow \quad |G'(\frac{5\pi}{6})| > 1 \\ G'(\pi) &= 2\pi \cos \pi = -2 \quad \Rightarrow \quad |G'(\pi)| > 1 \end{aligned}$$

and G is strictly decreasing on $\left(\frac{5\pi}{6}, \pi\right) \quad \Rightarrow \quad x_{ii}$ is unstable

(c) Construct the sets:

$$I_{j_0j_1j_2\cdots j_n} = \left\{ x : x \in I_{j_0} \text{ and } G^k(x) \in I_{j_k} \text{ for } 1 \le k \le n \right\}$$

where $j_k = 1$ or 2; and

$$S_n = \bigcup_{j_0, j_1, \cdots, j_n} I_{j_0 j_1 j_2 \cdots j_n}.$$

Then, the invariant set is given by $S = \bigcap_{n=0}^{\infty} S_n$.

(d) The symbolic dynamics are constructed via the itinerary map $h: S \to \Sigma$ where $\Sigma = \{1, 2\}^{\mathbb{N}}$ (i.e., Σ is the set of all sequences of the symbols '1' and '2') and

$$h(x) = (j_0, j_1, j_2, ...)$$
 with $x_0 \in I_{j_0}$ and $G^k(x) \in I_{j_k}$.

- (e) i. Consider the sequence of symbols $(j_0, j_1, j_2, \dots) \in \Sigma$. Form the sequence of sets $J_n = I_{j_0 j_1 j_2 \dots j_n}$. Since the J_n form a nested family of closed intervals, by the Nested Intervals Theorem, $\exists x^* \in \bigcap_{n=0}^{\infty} J_n$. Thus, $h(x^*) = (j_0, j_1, j_2, \dots)$; i.e., h is surjective.
 - ii. Observe that for $x \in S$ we have

$$|G'(x)| = |2\pi \cos x| \ge |2\pi \cos \frac{\pi}{6}| > 1.$$

Therefore, $|(G^k)'(x)| > 1$ in *S*, since $(G^n)'(x_0) = \prod_{i=0}^{n-1} G'(x_i)$.

Suppose there exists $x, y \in S$ and h(x) = h(y). This implies that $G^k(x)$ and $G^k(y)$ are in the same subinterval $I_{j_0 j_1 j_2 \cdots j_k}$ of the pair $I_1 \cup I_2$. From $|G'| \ge q > 1$, we have that

$$\begin{aligned} \left| \frac{G^{k+1}(y) - G^{k+1}(x)}{G^k(y) - G^k(x)} \right| &\geq q \\ \text{i.e.,} & \left| G^{k+1}(y) - G^{k+1}(x) \right| &\geq q \left| G^k(y) - G^k(x) \right| \\ &\geq q^2 \left| G^{k-1}(y) - G^{k-1}(x) \right| \\ &\geq q^3 \left| G^{k-2}(y) - G^{k-2}(x) \right| \\ &\vdots \\ &\geq q^{k+1} |y - x|. \end{aligned}$$

But $|G^{k+1}(y) - G^{k+1}(x)| \le 1$ (since $x, y \in S$). So

$$|y - x| \le \frac{1}{q^{k+1}}$$

which implies that x = y. Hence, h is injective.

(f) Since h is bijective, a k-periodic orbit of G corresponds to a fixed point of σ^k

where σ is the backward shift map.

no. of prime period-6 orbits of $G = \frac{1}{6} \left(\text{no. of fixed points of } \sigma^6 - \text{no. of fixed points of } \sigma^3 \right)$

-no. of fixed points of σ^2 + no. of fixed points of σ

$$= \frac{2^6 - 2^3 - 2^2 + 2}{6} = 9.$$

no. of prime period-8 orbits of $G = \frac{1}{8} \left(\text{no. of fixed points of } \sigma^8 - \text{no. of fixed points of } \sigma^4 \right)$ $= \frac{2^8 - 2^4}{8} = 30.$

(g) For $x \in S$ we have

$$|G'(x)| \ge |G'(\frac{\pi}{6})| = \pi\sqrt{3}.$$

Therefore, Liapunov exponent

$$\lambda = \lim_{n \to \infty} \left\{ \frac{1}{n} \sum_{i=0}^{n-1} \ln |G'(x_i)| \right\} \ge \ln(\pi\sqrt{3}) \lim_{n \to \infty} \left\{ \frac{1}{n} \sum_{i=0}^{n-1} 1 \right\} = \ln(\pi\sqrt{3}) = \ln \pi + \frac{1}{2} \ln 3;$$

Since $\lambda > 0$, there is a sensitive dependency upon initial conditions.

- 3. (a) Prove that if a continuous \mathbb{R}^1 mapping has a period-3 orbit then it has prime period-*n* orbits for all $n \in \mathbb{N}$. (The *Intermediate Value Theorem* may be assumed).
 - (b) Consider the \mathbb{R}^1 mapping $x_{n+1} = H_{\mu}(x_n)$ where

$$H_{\mu}(x) = \mu\left(\frac{1}{2} - \left|x - \frac{1}{2}\right|\right),$$

and $\mu > 0$.

- i. For both $\mu > 1$ and $\mu < 1$, find the fixed points of $H_{\mu}(x)$ and discuss their stability.
- ii. Let $\mu = 2$.
 - A. Find the orbit which starts at $x_0 = 2/7$. What can you infer from this?
 - B. By considering the graph of the iterated map $H_2 \circ H_2$ or otherwise, find a period-2 orbit.

Solution.

(a) Suppose the mapping H has the period-3 orbit $\{a, b, c\}$. WLOG we assume a < b < c. To prove that H has period-n orbits for all $n \in \mathbb{N}$:

Let us define $I_0 = [a, b]$ and $I_1 = [b, c]$ and make the following observations

- i. $H(I_0) \supseteq I_1$.
- ii. $H(I_1) \supseteq I_0 \cup I_1$.
- iii. If I is a closed interval and $H(I) \supseteq I$, then H has a fixed point in I.
- iv. Suppose I, J are closed intervals. If $H(I) \supseteq J$, then there exists a closed interval $K \subseteq I$ such that H(K) = J.

The last two observations can be established using the intermediate value theorem.

- We start by noting that (ii) and (iii) imply that H has a fixed point in I_1 . Also, (i), (ii) and (iii) imply that H^2 has a fixed point in I_0 , so that H has a period-2 orbit. Thus, the period-1 and period-2 cases are proven.
- We have n > 3. Now we construct a nested sequence of closed intervals A_n : let $A_0 = I_1$, (ii) and (iv) imply that there is a $A_1 \subseteq A_0$ with $H(A_1) = A_0 = I_1$. Similarly, there is a $A_2 \subseteq A_1$ with $H(A_2) = A_1$ and so $H^2(A_2) = A_0$. Proceeding similarly, the sequence

$$A_0 \supseteq A_1 \supseteq A_2 \supseteq \cdots \supseteq A_{n-2}$$
, with $H^k(A_k) = A_0$, $k = 1, 2, \dots, n-2$,

can be constructed. The next interval in the sequence, A_{n-1} is constructed by noting that $H^{n-1}(A_{n-2}) = H(A_0) \supseteq I_0$ (using (ii)). Then, (iv) implies that there is a $A_{n-1} \subseteq A_{n-2}$ with $H^{n-1}(A_{n-1}) = I_0$. Finally since $H^n(A_{n-1}) =$ $H(I_0) \supseteq I_1$ (using (i)), there exists a $A_n \subseteq A_{n-1}$ with $H^n(A_n) = A_0 =$ I_1 . Now, by construction $A_n \subseteq A_0$, so that $H^n(A_n) \supseteq A_n$. So (iii) then implies that there exists a fixed point $x^* \in A_n$ with $H^n(x^*) = x^*$. This is a prime period-*n* point unless it is also fixed point of H^k for k < n. But this is impossible since $x^* \in A_k$, $k = 0, 1, \dots, n$ gives that $H^k(x^*) \in I_1$ for $k = 1, 2, \dots, n-2$ and we also have $H^{n-1}(x^*) \in I_0$. (The case $H^{n-1}(x^*) \in$ $I_0 \cap I_1 = \{b\}$ can be excluded since it would imply n = 3.)

(b) i.

$$H_{\mu}(x) = \begin{cases} \mu x, & \text{for } x \le \frac{1}{2} \\ \mu (1-x), & \text{for } x > \frac{1}{2} \end{cases}$$

Sketch see figure 3.

• For $x \leq \frac{1}{2}$: Fixed points satisfy $x^* = \mu x^*$, so for $\mu < 1$ and $\mu > 1$ we have the fixed point $x^* = 0$. $G'_{\mu}(x) = \mu$ so x^* is stable for $\mu < 1$ and unstable for $\mu > 1$.

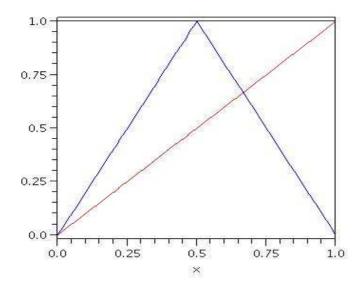


Figure 3: Graph of H_{μ} with $\mu = 2$.

- For $x > \frac{1}{2}$: Fixed points satisfy $x^* = \mu (1 - x^*)$; i.e., $x^* = \frac{\mu}{1+\mu}$. But $x^* > \frac{1}{2}$ so we require that $\frac{\mu}{1+\mu} > \frac{1}{2}$; i.e., $\mu > 1$. Since $G'_{\mu}(x) = -\mu$ the fixed point $x^* = \frac{\mu}{1+\mu}$ is unstable.
- ii. A. Let $\mu = 2$. Consider $x_0 = \frac{2}{7}$. Then

$$\begin{aligned} x_1 &= H_{\mu}(x_0) = 2\left(\frac{1}{2} - |\frac{2}{7} - \frac{1}{2}|\right) = \frac{4}{7}\\ \text{and} \qquad x_2 &= H_{\mu}(x_1) = 2\left(\frac{1}{2} - |\frac{4}{7} - \frac{1}{2}|\right) = \frac{6}{7}\\ \text{and} \qquad x_3 &= H_{\mu}(x_2) = 2\left(\frac{1}{2} - |\frac{6}{7} - \frac{1}{2}|\right) = \frac{2}{7}\\ \text{i.e.,} \qquad x_0 &= x_3. \end{aligned}$$

Therefore there is a period–3 orbit $\left\{\frac{2}{7}, \frac{4}{7}, \frac{6}{7}\right\}$. By (a), H_2 has period–n orbits for all $n \in \mathbb{N}$.

- B. Consider the iterated map $(H_2 \circ H_2)(x)$ (sketch see figure 4):
 - For $x \leq \frac{1}{2}$:

$$H_2(H_2(x)) = \begin{cases} 2 \times 2x, & \text{provided } 2x \le \frac{1}{2} \\ 2(1-2x), & \text{provided } 2x > \frac{1}{2} \end{cases}$$

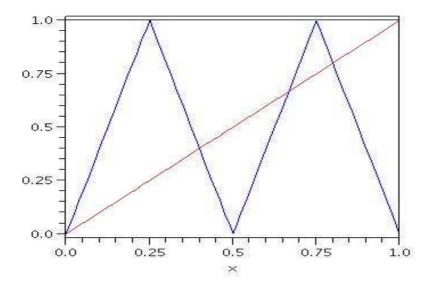


Figure 4:

• For $x > \frac{1}{2}$:

$$H_2(H_2(x)) = \begin{cases} 2 \times 2(1-x), & \text{provided } 2(1-x) \le \frac{1}{2} \\ 2(1-2(1-x)), & \text{provided } 2(1-x) > \frac{1}{2} \end{cases}$$

A fixed point for $H_2 \circ H_2$ for $x \in (\frac{1}{4}, \frac{2}{2})$ is found by solving $x^* = 2(1 - 2x^*)$; i.e., $x^* = \frac{2}{5}$. Now $H_2(\frac{2}{5}) = 2 \times \frac{2}{5} = \frac{4}{5}$ and $H_2(\frac{4}{5}) = 2(1 - \frac{4}{5}) = \frac{2}{5}$; i.e., $\{\frac{2}{5}, \frac{4}{5}\}$ is a period-2 orbit.

4. (a) Consider the \mathbb{R}^1 mapping $x_{n+1} = F_{\nu}(x_n)$ where

$$F_{\nu}(x) = \nu x \exp(-x) \,,$$

with $\nu \in \mathbb{R}$.

- i. Find all the fixed points of F_{ν} .
- ii. Determine the stability of the fixed points.
- iii. Sketch the corresponding bifurcation diagram in the (ν, x) plane. Indicate the stability of the fixed points on your sketch.
- iv. Does F_{ν} undergo subcritical flip bifurcations? Justify your answer.
- v. Does the iterated mapping $F_{\nu} \circ F_{\nu}$ undergo subcritical flip bifurcations? Justify your answer. (Properties of the Schwarzian derivative presented in the lectures may be assumed).

(b) Consider the 2-dimensional continuous system governed by

$$\left. \begin{array}{c} \dot{r} = r(1 - r^2) \\ \dot{\theta} = 1 \end{array} \right\},\$$

where $r(t) \in \Sigma$ and $\theta(t) > 0$ are the time-dependent plane polar coordinates, and Σ is the open unit interval (0, 1). The trajectory which starts at

$$\left. \begin{array}{c} r(0) = r_0 \\ \theta(0) = 0 \end{array} \right\},$$

next crosses Σ at r_1 .

i. Show that r_1 satisfies

$$\int_{r_0}^{r_1} \frac{1}{r(1-r^2)} \, dr = 2\pi.$$

ii. Hence find the corresponding Poincaré map $P: \Sigma \to \Sigma$ such that $P(r_0) = r_1$.

Solution.

(a) i. Fixed points satisfy $x^* = \nu x^* \exp(-x^*)$. Clearly $x^* = 0$ is a fixed point. For $x^* \neq 0$ we have $1 = \nu \exp(-x^*)$; i.e., $x^* = \ln \nu$ for $\nu > 0$. Therefore there are two fixed points:

$$\begin{array}{ll} x_1^* = 0 & \text{exists} & \forall \nu \\ x_2^* = \ln \nu & \text{exists for} & \nu > 0 \end{array} \right\}.$$

ii. Stability of fixed points is determined by

$$F'_{\nu}(x) = \nu \exp(-x) - \nu x \exp(-x).$$

Then,
$$F'_{\nu}(x_1^*) = \nu$$
 and $F'_{\nu}(x_2^*) = \nu \exp(\ln \frac{1}{\nu}) - \nu \ln \nu \exp\left(\ln \frac{1}{\nu}\right) = 1 - \ln \nu$.

Hence, x_1^* is stable for $|\nu| < 1$ and unstable for $|\nu| > 1$. And x_2^* is stable provided that

$$-1 < 1 - \ln \nu < 1$$

$$\Rightarrow \quad 0 < \ln \nu < 2$$

i.e.,
$$1 < \nu < \exp(2)$$

and unstable for $\nu < 1$ and $\nu > \exp(2)$

iii. Sketch: see figure 5.

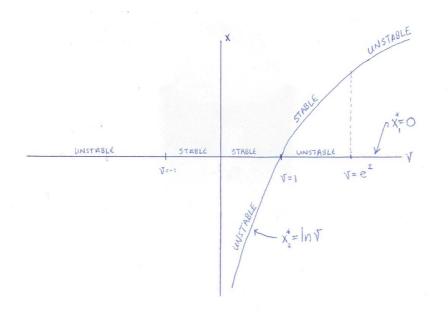


Figure 5:

iv. $F_{\nu}''(x) = -2\nu e^{-x} + \nu x e^{-x}$ and $F_{\nu}'''(x) = 3\nu e^{-x} - \nu x e^{-x}$ Schwarzian derivative:

$$D_{s}\{F_{\nu}\} = \frac{F_{\nu}'''}{F_{\nu}'} - \frac{3}{2} \left(\frac{F_{\nu}''}{F_{\nu}'}\right)^{2}$$

$$= \frac{\nu e^{-x} (3-x)}{\nu e^{-x} (1-x)} - \frac{3}{2} \left[\frac{\nu e^{-x} (x-2)}{\nu e^{-x} (1-x)}\right]^{2}$$

$$= \frac{3-x}{1-x} - \frac{3}{2} \left(\frac{2-x}{1-x}\right)^{2}$$

$$= \frac{-(x-2)^{2}-2}{2(1-x)^{2}}$$

$$< 0 \quad \text{for } x = 0 \quad \text{and } x = \ln \nu$$

Therefore, there are no subcritical flip bifurcations.

Notice that for flip bifurcation at fixed point $x = \ln \nu$, we have: $F'_{\nu}(\ln \nu) = 1 - \ln \nu = -1 \Rightarrow \nu = e^2 \Rightarrow x = 2$. Therefore, the Schwarzian derivative is well-defined at $x = \ln \nu$ (and obviously at x = 0 too).

v. Since

$$D_s\{(F_\mu \circ G_\mu)\}(x) = \left[G'_\mu(x)\right]^2 D_s\{F_\mu\}(G_\mu(x)) + D_s\{F_\mu\}(x)$$

for any three times differentiable F_{ν} and G_{ν} (a standard result proved in

class), it follows that $D_s\{(F_\mu \circ F_\mu)\}(x) < 0$ and so there are no subcritical flip bifurcations.

(b) i. Suppose the trajectory starting at $(r_0, 0)$ next crosses Σ axis at time t = T; i.e.,

$$\begin{array}{l} r(0) = r_0, \qquad r(T) = r_1 \\ \theta(0) = 0, \qquad \theta(T) = 2\pi \end{array} \right\}.$$

Then

$$\dot{\theta} = 1 \qquad \Rightarrow \qquad \int_0^{2\pi} d\theta = \int_0^T dt \,, \qquad \text{i.e.}, \qquad 2\pi = T$$

and

$$\dot{r} = r(1 - r^2) \qquad \Rightarrow \qquad \int_{r_0}^{r_1} \frac{dr}{r(1 - r^2)} = \int_0^T dt = 2\pi.$$

ii.

$$\begin{split} \int_{r_0}^{r_1} \frac{dr}{r(1-r^2)} &= \int_{r_0}^{r_1} \left(\frac{1}{r} - \frac{1}{2(1+r)} + \frac{1}{2(1-r)}\right) dr \\ &= \left[\ln r - \frac{1}{2}\ln(1+r) - \frac{1}{2}\ln(1-r)\right]_{r_0}^{r_1} \\ &= \left[\ln\left(\frac{r}{\sqrt{1-r^2}}\right)\right]_{r_0}^{r_1} \\ \Rightarrow e^{2\pi} &= \frac{r_1}{\sqrt{1-r_1^2}} \frac{\sqrt{1-r_0^2}}{r_0} \\ \text{i.e.,} \quad \frac{r_1^2}{1-r_1^2} &= \frac{r_0^2 e^{4\pi}}{1-r_0^2} \\ \text{i.e.,} \quad \frac{1}{\frac{1}{r_1^2} - 1} &= \frac{e^{4\pi}}{\frac{1}{r_0^2} - 1} \\ &\Rightarrow r_1 &= \left[1 + e^{-4\pi} \left(r_0^{-2} - 1\right)\right]^{-1/2} \\ \text{i.e.,} \quad P(r) &= \left[1 + e^{-4\pi} \left(r^{-2} - 1\right)\right]^{-1/2}. \end{split}$$

[End of Paper]