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May 2006 — Questions and Answers

M445/M06 Dynamical Systems

1. Consider the recurrence relation

xn+2 =
7

16
xn +

3

2
xn+1 + x2

n ,

where xi ∈ R (i = 0, 1, 2, . . .).

(a) Find the fixed points of this recurrence relation.

(b) Determine the nature of the fixed point at the (x, y) origin of the corresponding
R2 system in which yn = xn+1.

(c) Give the definitions of the stable and unstable subspaces of the origin.

(d) Let

(
1
α

)
and

(
1
β

)
be vectors aligned with the stable and unstable subspaces,

respectively. Find the constants α and β, and write down the equations of the
stable and unstable subspaces.

(e) Introduce the vector

(
u+
n

u−
n

)
which is defined via

(
xn

yn

)
=

(
1 1
α β

)(
u+
n

u−
n

)
.

Thereby, show that the system may be expressed in the form

u+
n+1 = c1 u

+
n + c2

(
u+
n

)2
+ c3

(
u+
nu

−
n

)
+ c4

(
u−
n

)2
,

u−
n+1 = d1 u

−
n + d2

(
u+
n

)2
+ d3

(
u+
nu

−
n

)
+ d4

(
u−
n

)2
;

and evaluate the constants c1,...,4 and d1,...,4.

(f) State the stable manifold theorem.

(g) Find the quadratic approximations to the stable and unstable manifolds in the
(u+, u−) plane.

(h) Sketch the stable and unstable manifolds in the (u+, u−) plane. Include in your
sketch a few representative orbits and identify the stable and unstable subspaces.
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Solution.

(a) The fixed points x = x∗ satisfy

x∗ =
7

16
x∗ +

3

2
x∗ + (x∗)2 i.e., x∗

(
x∗ +

15

16

)
= 0

so we have x∗ = 0 and x∗ = −15/16.

(b) We have (
xn+1

yn+1

)
= F

(
xn

yn

)
=

(
yn

7
16
xn +

3
2
yn + x2

n

)
.

The Jacobian matrix:

DF =

(
0 1

7
16

+ 2xn
3
2

)
⇒ DF|0 =

(
0 1
7
16

3
2

)
= A.

The eigenvalues λ = λ1,2 of A are given by

(0− λ)

(
3

2
− λ

)
− 7

16
= 0, i.e.,

(
λ− 7

4

)(
λ+

1

4

)
= 0;

thus, we have λ1 = −1/4 and λ2 = 7/4. Since |λ1| < 1 and |λ2 > 1, the fixed
point at x = 0, y = 0 is a saddle point.

(c) The stable subspace E+ is the span of eigenvectors associated with eigenvectors
λ with |λ| < 1. The unstable subspace E− is the span of eigenvectors associated
with eigenvectors λ with |λ| > 1.

(d) The eigenvector

(
ex1
ey1

)
associated with λ1 is given via

(
0 1
7
16

3
2

)(
ex1
ey1

)
= −1

4

(
ex1
ey1

)
, i.e.,

(
ex1
ey1

)
=

(
1
−1

4

)
, say;

and the eigenvector

(
ex2
ey2

)
associated with λ2 is given via

(
0 1
7
16

3
2

)(
ex2
ey2

)
=

7

4

(
ex2
ey2

)
, i.e.,

(
ex2
ey2

)
=

(
1
7
4

)
, say.

Hence, E+ is the line y = −1
4
x, and E− is the line y = 7

4
x.

(e) We have S =

(
1 1
−1

4
7
4

)
with

(
u+
n

u−
n

)
=

1

2

(
7
4

−1
1
4

1

)(
xn

yn

)
=

1

2

(
7
4
xn − yn

1
4
xn + yn

)
(1)
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and
(

xn

yn

)
=

(
1 1
−1

4
7
4

)(
u+
n

u−
n

)
=

(
u+
n + u−

n

−1
4
u+
n + 7

4
u−
n

)
. (2)

Now, using eqn (1), we can re-write xn+1 = yn as

u+
n+1 + u−

n+1 = −1

4
u+
n +

7

4
u−
n ; (3)

and, using eqn (2), we can re-write yn+1 =
7
16
xn +

3
2
yn + x2

n as

−1

4
u+
n+1 +

7

4
u−
n+1 =

7

16

(
u+
n + u−

n

)
+

3

2

(
−1

4
u+
n +

7

4
u−
n

)
+
(
u+
n + u−

n

)2

=
1

16
u+
n +

49

16
u−
n +

(
u+
n + u−

n

)2
. (4)

Taking 7
4
(3) - (4) gives:

2u+
n+1 = − 7

16
u+
n +

49

16
u−
n − 1

16
u+
n − 49

16
u−
n −

(
u+
n + u−

n

)2

i.e., u+
n+1 = −1

4
u+
n − 1

2

(
u+
n + u−

n

)2
; (5)

i.e., we have c1 = −1
4
, c2 = −1

2
, c3 = −1 and c4 = −1

2
.

Similarly, taking 1
4
(3) + (4) gives:

2u−
n+1 = − 1

16
u+
n +

7

16
u−
n +

1

16
u+
n +

49

16
u−
n +

(
u+
n + u−

n

)2

i.e., u−
n+1 =

7

4
u−
n +

1

2

(
u+
n + u−

n

)2
; (6)

i.e., we have d1 =
7
4
, d2 =

1
2
, d3 = 1 and d4 =

1
2
.

(f) The stable manifold theorem asserts the existence of (i) an invariant stable mani-
fold W s defined by

{
x : Fk(x) → 0 as k → ∞

}
; and (ii) an invariant unstable

manifold W u defined by
{
x : Fk(x) → 0 as k → −∞

}
.

(g) Consider the quadratic expansion of the stable manifold: u− = a2 (u
+)

2
. We have

u−
n+1 = a2

(
u+
n+1

)2

= a2

[
−1

4
u+
n − 1

2

(
u+
n + u−

n

)2
]2

from eqn (5)

= a2

[
1

16

(
u+
n

)2
+

1

4
u+
n

(
u+
n + u−

n

)2
+

1

4

(
u+
n + u−

n

)4
]

≈ a2
1

16

(
u+
n

)2
(neglecting cubic and higher-order terms). (7)
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Also, recalling eqn (6), we have

u−
n+1 =

7

4
a2
(
u+
n

)2
+

1

2

[
u+
n + a2

(
u+
n

)2]2

≈
(
7

4
a2 +

1

2

)(
u+
n

)2
(neglecting cubic and higher-order terms). (8)

Comparing eqns (7) and (8), we find

a2
1

16
=

7

4
a2 +

1

2
, i.e., a2 = − 8

27
.

Consider the quadratic expansion of the unstable manifold: u+ = b2 (u
−)2. We

have

u+
n+1 = b2

(
u−
n+1

)2

= b2

[
7

4
u−
n +

1

2

(
u+
n + u−

n

)2
]2

from eqn (6)

= b2

[
49

16

(
u−
n

)2
+

7

4
u−
n

(
u+
n + u−

n

)2
+

1

4

(
u+
n + u−

n

)4
]

≈ b2
49

16

(
u−
n

)2
(neglecting cubic and higher-order terms). (9)

Also, recalling eqn (5), we have

u+
n+1 = −1

4
b2
(
u−
n

)2 − 1

2

[
u−
n + b2

(
u−
n

)2]2

≈
(
−1

4
b2 −

1

2

)(
u−
n

)2
(neglecting cubic and higher-order terms). (10)

Comparing eqns (9) and (10), we find

b2
49

16
= −1

4
b2 −

1

2
, i.e., b2 = − 8

53
.

(h) Sketch see figure 1:
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Figure 1: Stable and unstable manifolds.

2. Consider the mapping xn+1 = G(xn) with

G(x) = 2π sin x ,

for x ∈ [0, π].

(a) Let I1 = [0, a] and I2 = [b, π] with a < b. Find the largest value of a and smallest
value of b such that G maps I1 ∪ I2 onto [0, π].

(b) Briefly discuss the stability of the fixed points of G.
(You are not required to locate exactly the fixed points).

(c) Describe the invariant set S = {x ∈ [0, π] : Gk(x) ∈ [0, π], k ∈ N} in terms of I1
and I2.

(d) Give the definition of the itinerary map which forms the basis of the symbolic
dynamics on S for G(x).

(e) Show that the itinerary map is

i. surjective (the Nested Intervals Theorem may be assumed);

ii. injective.

(f) How many prime period–6 orbits for G are in S?
How many prime period–8 orbits for G are in S?
Justify your answers.
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(g) Show that the Liapunov exponent λ for G acting on S has the lower bound

λ ≥ ln π +
ln 3

2
.

What can you infer from this?

Solution.

(a) sin π
6
= sin 5π

6
= 1

2
⇒ a = π

6
and b = 5π

6

Figure 2: Graph of G(x) = 2π sin(x).

(b) From the sketch (see figure 2) there are two fixed points: xi = 0 and xii ∈ (5π
6
, π).

G′(0) = 2π cos 0 = 2π ⇒ |G′(xi)| > 1

⇒ xi is unstable

G′(
5π

6
) = 2π cos

5π

6
= −

√
3π ⇒ |G′(

5π

6
)| > 1

G′(π) = 2π cos π = −2 ⇒ |G′(π)| > 1

and G is strictly decreasing on (5π
6
, π) ⇒ xii is unstable

(c) Construct the sets:

Ij0j1j2···jn =
{
x : x ∈ Ij0 and Gk(x) ∈ Ijk for 1 ≤ k ≤ n

}
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where jk = 1 or 2; and
Sn = ∪

j0,j1,··· ,jn
Ij0j1j2···jn .

Then, the invariant set is given by S = ∩∞
n=0Sn.

(d) The symbolic dynamics are constructed via the itinerary map h : S → Σ where
Σ = {1, 2}N (i.e., Σ is the set of all sequences of the symbols ‘1’ and ‘2’) and

h(x) = (j0, j1, j2, . . .) with x0 ∈ Ij0 and Gk(x) ∈ Ijk .

(e) i. Consider the sequence of symbols (j0, j1, j2, · · · ) ∈ Σ. Form the sequence of
sets Jn = Ij0j1j2···jn . Since the Jn form a nested family of closed intervals, by
the Nested Intervals Theorem, ∃x∗ ∈ ∩∞

n=0Jn. Thus, h(x∗) = (j0, j1, j2, · · · );
i.e., h is surjective.

ii. Observe that for x ∈ S we have

|G′(x)| = |2π cos x| ≥ |2π cos
π

6
| > 1.

Therefore, |
(
Gk
)′
(x)| > 1 in S, since (Gn)′ (x0) =

∏n−1
i=0 G′(xi).

Suppose there exists x, y ∈ S and h(x) = h(y). This implies that Gk(x)
and Gk(y) are in the same subinterval Ij0j1j2···jk of the pair I1 ∪ I2. From
|G′| ≥ q > 1, we have that

∣∣∣∣
Gk+1(y)−Gk+1(x)

Gk(y)−Gk(x)

∣∣∣∣ ≥ q

i.e.,
∣∣Gk+1(y)−Gk+1(x)

∣∣ ≥ q
∣∣Gk(y)−Gk(x)

∣∣
≥ q2

∣∣Gk−1(y)−Gk−1(x)
∣∣

≥ q3
∣∣Gk−2(y)−Gk−2(x)

∣∣
...

≥ qk+1|y − x|.

But |Gk+1(y)−Gk+1(x)| ≤ 1 (since x, y ∈ S). So

|y − x| ≤ 1

qk+1

which implies that x = y. Hence, h is injective.

(f) Since h is bijective, a k–periodic orbit of G corresponds to a fixed point of σk
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where σ is the backward shift map.

no. of prime period-6 orbits of G =
1

6

(
no. of fixed points of σ6 - no. of fixed points of σ3

−no. of fixed points of σ2 + no. of fixed points of σ

)

=
26 − 23 − 22 + 2

6
= 9.

no. of prime period-8 orbits of G =
1

8

(
no. of fixed points of σ8 - no. of fixed points of σ4

)

=
28 − 24

8
= 30.

(g) For x ∈ S we have

|G′(x)| ≥ |G′(
π

6
)| = π

√
3.

Therefore, Liapunov exponent

λ = lim
n→∞

{
1

n

n−1∑

i=0

ln |G′(xi)|
}

≥ ln(π
√
3) lim

n→∞

{
1

n

n−1∑

i=0

1

}
= ln(π

√
3) = ln π+

1

2
ln 3 ;

Since λ > 0, there is a sensitive dependency upon initial conditions.

3. (a) Prove that if a continuous R1 mapping has a period–3 orbit then it has prime
period–n orbits for all n ∈ N. (The Intermediate Value Theorem may be as-
sumed).

(b) Consider the R1 mapping xn+1 = Hµ(xn) where

Hµ(x) = µ

(
1

2
−
∣∣∣∣ x− 1

2

∣∣∣∣
)
,

and µ > 0.

i. For both µ > 1 and µ < 1, find the fixed points of Hµ(x) and discuss their
stability.

ii. Let µ = 2.

A. Find the orbit which starts at x0 = 2/7.
What can you infer from this?

B. By considering the graph of the iterated map H2 ◦H2 or otherwise, find
a period-2 orbit.
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Solution.

(a) Suppose the mapping H has the period–3 orbit {a, b, c}. WLOG we assume
a < b < c. To prove that H has period–n orbits for all n ∈ N:

Let us define I0 = [a, b] and I1 = [b, c] and make the following observations

i. H(I0) ⊇ I1.

ii. H(I1) ⊇ I0 ∪ I1.

iii. If I is a closed interval and H(I) ⊇ I, then H has a fixed point in I.

iv. Suppose I, J are closed intervals. If H(I) ⊇ J , then there exists a closed
interval K ⊆ I such that H(K) = J .

The last two observations can be established using the intermediate value theorem.

• We start by noting that (ii) and (iii) imply that H has a fixed point in I1.
Also, (i), (ii) and (iii) imply that H2 has a fixed point in I0, so that H has a
period-2 orbit. Thus, the period-1 and period-2 cases are proven.

• We have n > 3. Now we construct a nested sequence of closed intervals An:
let A0 = I1, (ii) and (iv) imply that there is a A1 ⊆ A0 with H(A1) = A0 =
I1. Similarly, there is a A2 ⊆ A1 with H(A2) = A1 and so H2(A2) = A0.
Proceeding similarly, the sequence

A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An−2, with Hk(Ak) = A0, k = 1, 2, . . . , n− 2,

can be constructed. The next interval in the sequence, An−1 is constructed by
noting that Hn−1(An−2) = H(A0) ⊇ I0 (using (ii)). Then, (iv) implies that
there is a An−1 ⊆ An−2 with Hn−1(An−1) = I0. Finally since Hn(An−1) =
H(I0) ⊇ I1 (using (i)), there exists a An ⊆ An−1 with Hn(An) = A0 =
I1. Now, by construction An ⊆ A0, so that Hn(An) ⊇ An. So (iii) then
implies that there exists a fixed point x⋆ ∈ An with Hn(x⋆) = x⋆. This is
a prime period-n point unless it is also fixed point of Hk for k < n. But
this is impossible since x⋆ ∈ Ak, k = 0, 1, · · · , n gives that Hk(x⋆) ∈ I1 for
k = 1, 2, . . . , n − 2 and we also have Hn−1(x⋆) ∈ I0. (The case Hn−1(x⋆) ∈
I0 ∩ I1 = {b} can be excluded since it would imply n = 3.)

(b) i.

Hµ(x) =

{
µx, for x ≤ 1

2

µ (1− x) , for x > 1
2

Sketch see figure 3.

• For x ≤ 1
2
:

Fixed points satisfy x∗ = µx∗, so for µ < 1 and µ > 1 we have the fixed
point x∗ = 0. G′

µ(x) = µ so x∗ is stable for µ < 1 and unstable for µ > 1.
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Figure 3: Graph of Hµ with µ = 2.

• For x > 1
2
:

Fixed points satisfy x∗ = µ (1− x∗); i.e., x∗ = µ
1+µ

. But x∗ > 1
2
so we

require that µ
1+µ

> 1
2
; i.e., µ > 1. Since G′

µ(x) = −µ the fixed point
x∗ = µ

1+µ
is unstable.

ii. A. Let µ = 2. Consider x0 =
2
7
. Then

x1 = Hµ(x0) = 2

(
1

2
− |2

7
− 1

2
|
)

=
4

7

and x2 = Hµ(x1) = 2

(
1

2
− |4

7
− 1

2
|
)

=
6

7

and x3 = Hµ(x2) = 2

(
1

2
− |6

7
− 1

2
|
)

=
2

7

i.e., x0 = x3 .

Therefore there is a period–3 orbit
{

2
7
, 4
7
, 6
7

}
.

By (a), H2 has period–n orbits for all n ∈ N.
B. Consider the iterated map (H2 ◦H2) (x) (sketch see figure 4):

• For x ≤ 1
2
:

H2 (H2(x)) =

{
2× 2x, provided 2x ≤ 1

2

2 (1− 2x) , provided 2x > 1
2

10



Figure 4:

• For x > 1
2
:

H2 (H2(x)) =

{
2× 2 (1− x) , provided 2 (1− x) ≤ 1

2

2 (1− 2(1− x)) , provided 2 (1− x) > 1
2

A fixed point forH2◦H2 for x ∈
(
1
4
, 2
2

)
is found by solving x∗ = 2 (1− 2x∗)

; i.e., x∗ = 2
5
. Now H2(

2
5
) = 2 × 2

5
= 4

5
and H2(

4
5
) = 2

(
1− 4

5

)
= 2

5
; i.e.,{

2
5
, 4
5

}
is a period–2 orbit.

4. (a) Consider the R1 mapping xn+1 = Fν(xn) where

Fν(x) = νx exp(−x) ,

with ν ∈ R.
i. Find all the fixed points of Fν .

ii. Determine the stability of the fixed points.

iii. Sketch the corresponding bifurcation diagram in the (ν, x) plane. Indicate
the stability of the fixed points on your sketch.

iv. Does Fν undergo subcritical flip bifurcations?
Justify your answer.

v. Does the iterated mapping Fν ◦ Fν undergo subcritical flip bifurcations?
Justify your answer. (Properties of the Schwarzian derivative presented in
the lectures may be assumed).
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(b) Consider the 2–dimensional continuous system governed by

ṙ = r(1− r2)

θ̇ = 1

}
,

where r(t) ∈ Σ and θ(t) > 0 are the time–dependent plane polar coordinates, and
Σ is the open unit interval (0, 1). The trajectory which starts at

r(0) = r0
θ(0) = 0

}
,

next crosses Σ at r1.

i. Show that r1 satisfies ∫ r1

r0

1

r(1− r2)
dr = 2π.

ii. Hence find the corresponding Poincaré map P : Σ → Σ such that P (r0) = r1.

Solution.

(a) i. Fixed points satisfy x∗ = νx∗ exp(−x∗). Clearly x∗ = 0 is a fixed point. For
x∗ 6= 0 we have 1 = ν exp(−x∗) ; i.e., x∗ = ln ν for ν > 0. Therefore there are
two fixed points:

x∗
1 = 0 exists ∀ν

x∗
2 = ln ν exists for ν > 0

}
.

ii. Stability of fixed points is determined by

F ′
ν(x) = ν exp(−x)− νx exp(−x) .

Then, F ′
ν(x

∗
1) = ν and F ′

ν(x
∗
2) = ν exp(ln 1

ν
)− ν ln ν exp

(
ln 1

ν

)
= 1− ln ν.

Hence, x∗
1 is stable for |ν| < 1 and unstable for |ν| > 1. And x∗

2 is stable
provided that

−1 < 1− ln ν < 1

⇒ 0 < ln ν < 2

i.e., 1 < ν < exp(2)

and unstable for ν < 1 and ν > exp(2)

iii. Sketch: see figure 5.
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Figure 5:

iv. F ′′
ν (x) = −2νe−x + νxe−x and F ′′′

ν (x) = 3νe−x − νxe−x

Schwarzian derivative:

Ds{Fν} =
F ′′′
ν

F ′
ν

− 3

2

(
F ′′
ν

F ′
ν

)2

=
νe−x (3− x)

νe−x (1− x)
− 3

2

[
νe−x (x− 2)

νe−x (1− x)

]2

=
3− x

1− x
− 3

2

(
2− x

1− x

)2

=
− (x− 2)2 − 2

2 (1− x)2

< 0 for x = 0 and x = ln ν

Therefore, there are no subcritical flip bifurcations.

Notice that for flip bifurcation at fixed point x = ln ν, we have:
F ′
ν(ln ν) = 1− ln ν = −1 ⇒ ν = e2 ⇒ x = 2.

Therefore, the Schwarzian derivative is well-defined at x = ln ν (and obviously
at x = 0 too).

v. Since

Ds{(Fµ ◦Gµ)}(x) =
[
G′

µ(x)
]2
Ds{Fµ} (Gµ(x)) +Ds{Fµ}(x),

for any three times differentiable Fν and Gν (a standard result proved in
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class), it follows that Ds{(Fµ ◦ Fµ)}(x) < 0 and so there are no subcritical
flip bifurcations.

(b) i. Suppose the trajectory starting at (r0, 0) next crosses Σ axis at time t = T ;
i.e.,

r(0) = r0, r(T ) = r1
θ(0) = 0, θ(T ) = 2π

}
.

Then

θ̇ = 1 ⇒
∫ 2π

0

dθ =

∫ T

0

dt , i.e., 2π = T

and

ṙ = r
(
1− r2

)
⇒

∫ r1

r0

dr

r (1− r2)
=

∫ T

0

dt = 2π .

ii.
∫ r1

r0

dr

r (1− r2)
=

∫ r1

r0

(
1

r
− 1

2 (1 + r)
+

1

2 (1− r)

)
dr

=

[
ln r − 1

2
ln (1 + r)− 1

2
ln (1− r)

]r1

r0

=

[
ln

(
r√

1− r2

)]r1

r0

⇒ e2π =
r1√
1− r21

√
1− r20
r0

i.e.,
r21

1− r21
=

r20e
4π

1− r20

i.e.,
1

1
r21

− 1
=

e4π

1
r20

− 1

⇒ r1 =
[
1 + e−4π

(
r−2
0 − 1

)]−1/2

i.e., P (r) =
[
1 + e−4π

(
r−2 − 1

)]−1/2
.

[End of Paper]
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