M4 Dynamical Systems

May 2005 - Questions
2 hours; best 3 answers count.

1. Consider the two-dimensional system

$$
\begin{aligned}
& x_{n+1}=-x_{n}+3 y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3} \\
& y_{n+1}=-\frac{3}{2} x_{n}+\frac{7}{2} y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3}
\end{aligned}
$$

where $x_{i}, y_{i} \in \mathbb{R}$.
(a) Show that there is a saddle-point at the origin.
(b) Give the definitions of the stable and unstable subspaces of the origin and find their equations.
(c) Introduce the vector $\binom{u_{n}^{+}}{u_{n}^{-}}$which is defined via

$$
\binom{x_{n}}{y_{n}}=\left(\begin{array}{cc}
a & 1 \\
1 & b
\end{array}\right)\binom{u_{n}^{+}}{u_{n}^{-}}
$$

where $\binom{a}{1}$ and $\binom{1}{b}$ are vectors aligned with the stable and unstable subspaces, respectively. Thereby, show that the system may be expressed in the form

$$
\begin{aligned}
& u_{n+1}^{+}=\alpha u_{n}^{+} \\
& u_{n+1}^{-}=\beta u_{n}^{-}+\gamma\left(u_{n}^{+}\right)^{3}
\end{aligned}
$$

and evaluate the constants a, b, α, β and γ.
(d) State the stable manifold theorem and show that
i. the stable manifold is given exactly by

$$
u^{-}=\delta\left(u^{+}\right)^{3}
$$

ii. the unstable manifold is given exactly by

$$
u^{+}=\rho \text {; }
$$

and evaluate the constants δ and ρ.
(e) Sketch the stable and unstable manifolds in the $\left(u^{+}, u^{-}\right)$plane. Include in your sketch a few representative orbits and indentify the stable and unstable subspaces.
2. Consider the map

$$
\begin{equation*}
x_{n+2}=x_{n+1}-x_{n}+2\left(2 x_{n}-x_{n+1}\right)^{3}, \tag{*}
\end{equation*}
$$

where $x_{i} \in \mathbb{R}$.
(a) Find the fixed points of this map.
(b) Use the corresponding linearized map to discuss the stability of the fixed points.
(c) Let $z_{n}=x_{n}+\varepsilon x_{n+1}$ where $\varepsilon \in \mathbb{C}$. Show that, by choosing ε appropriately, the system (*) may expressed as

$$
z_{n+1}=\alpha z_{n}+\beta_{1}\left(z_{n}\right)^{3}+\beta_{2}\left(z_{n}\right)^{2} \bar{z}_{n}+\beta_{3} z_{n}\left(\bar{z}_{n}\right)^{2}+\beta_{4}\left(\bar{z}_{n}\right)^{3}
$$

and calculate the complex-valued constants $\alpha, \beta_{1}, \beta_{2}, \beta_{3}$ and β_{4}.
(d) Explain briefly (without performing any calculations) how the system may rewritten in terms of a new variable ζ_{n} as

$$
\zeta_{n+1}=\alpha \zeta_{n}+b \zeta_{n}^{2} \bar{\zeta}_{n}+O\left(\left|\zeta_{n}\right|^{4}\right)
$$

and express b in terms of ε.
(e) Using (d), show how the stability of the origin depends on b / ε and thereby comment upon the stability of the origin for the system $(*)$.
3. Consider the map

$$
H_{\mu}(x)=\mu \tan ^{-1} x,
$$

where x is a real-valued variable and μ is a real-valued parameter.
(a) How many fixed points are there? Specify the ranges of values of μ for which they exist.
(b) Calculate the Schwarzian derivative of H_{μ}.
(c) Describe the bifurcations which occur for
i. $\mu=1$,
ii. $\mu=-1$.

If there are flip bifurcations, state whether they are supercritical or subcritical. You may wish to make use of the following Taylor series expansion:

$$
\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots,
$$

for $|x|<1$.
(d) Sketch the bifurcation diagram in the (μ, x) plane; indicate the stability of the fixed points in your diagram.
4. (a) Suppose a continuous mapping G has a period-3 orbit (a, b, c) where $a<b<c$.
i. Show that G has orbits of period 1 and period 2 .
ii. Show that G has orbits of prime period n for all $n>3$.
(b) Consider the \mathbb{R}^{2} map represented as

$$
\mathbf{x}_{n+1}=\mathbf{F}\left(\mathbf{x}_{n}\right)
$$

where

$$
\mathbf{x}_{n+1}=\binom{x_{n+1}}{y_{n+1}}, \quad \mathbf{x}_{n}=\binom{x_{n}}{y_{n}}, \quad \mathbf{F}\left(\mathbf{x}_{n}\right)=\binom{y_{n}+\nu}{y_{n}^{2}-x_{n}^{2}},
$$

and ν is a real-valued parameter.
i. Find the $\binom{x}{y}$ fixed points of the map (\dagger) in terms of ν.
ii. If the map (\dagger) undergoes a Hopf bifurcation, what can you infer about the eigenvalues of the Jacobian matrix of derivatives of \mathbf{F} ?
iii. Find the value of ν, and the corresponding $\binom{x}{y}$ point, at which the map (\dagger) undergoes a Hopf bifurcation.

