M4 Dynamical Systems
May 2005 — Questions and Answers

2 hours; best 3 answers count.

1. Consider the two-dimensional system

5!
) (zn — yn)g,
Yn+1 = 2 n 2yn 8 n Yn)

Tyl = —Tp + 3yn -

where x;,y; € R.

(a) Show that there is a saddle-point at the origin.

(b) Give the definitions of the stable and unstable subspaces of the origin and find
their equations.

+
(¢) Introduce the vector ( Z’j ) which is defined via

()= ()G,

where ( Cll ) and 117 are vectors aligned with the stable and unstable sub-

spaces, respectively. Thereby, show that the system may be expressed in the
form

U1 = QU
Uy = Bu, +7 (U:f)3§
and evaluate the constants a, b, a, § and 7.
(d) State the stable manifold theorem and show that

i. the stable manifold is given ezactly by

u =94 (u+)3 ;
ii. the unstable manifold is given exactly by
= P;
and evaluate the constants ¢ and p.
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(e) Sketch the stable and unstable manifolds in the (u*,u™) plane. Include in your

sketch a few representative orbits and indentify the stable and unstable subspaces.

Solution.

(a) We have:

Tp+l = —Tp + 3yn ?5 (xn - yn)3 }
Yn+1 = _%xn + §yn - § (xn - yn)g

_ 15 )3
Yn+1 Yn 5Tn + 3YUn S(xn yn)
=By’ 348 @y
Jacobian ofF:DF:( 8 Yy 3 Y )
K}

-1 3
= DF|(0,0) = ( 3 7
2

Eigenvalues of DF| -

(=1 ) (;—)\>+g:0

5
= /\2—§A+2:0

= @2 -1)(A-2=0 = A=

Since |A,| < 1 and || > 1, there is a saddle-point at the origin.

The stable subspace E* is the span of eigenvectors associated with eigenvectors
A with |A] < 1. The unstable subspace E~ is the span of eigenvectors associated
with eigenvectors A with || > 1.

1
= stable subspace: y = 5

»-(1)

Eigenvectors of of DF| -
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= unstable subspace:



Diagonalising matrix S = ( e, € ) = ( 21 )

e (- )

Ut =T, — Y } and T wt —|—un}

1.e., u; =—z, +2yn Yp = U: +u;

Rewriting system in terms of u* and u™:

2uz+1 +u,, = —2ub —u, +3u +3u, — % (uj):)’

= uf +2u, — 2 (u))’ (1)
uf gt u,, = —3uf — %u; + %u;[ + %u; — %’ (uj{)3

= Juf+2u; — 8 (uh)’ (2)

(1) — (2) gives:

2 x (2)] — (1) gives:

(d) The stable manifold theorem asserts the existence of (i) an invariant stable mani-
fold W+ defined by {x : F¥(x) - 0 as k — oo}; and (ii) an invariant unstable
manifold W~ defined by {x: F¥(x) -0 as k— —oo}.

i. The stable manifold W is expanded as

u:)Q—I—ag (u:[)g—i-

(
= Uppp = a2 (u:+1)2 +as (UZH)?) +-

I I
= a2 (éu:{) + a/3 (51]1?{) + cubic and higher order terms

Comparing the coefficients of (u;)? gives:

1
Z(IQ = 209 = ay =10



CL3:1

3 .
)" gives:
8

15

+

(u?)” +O((u?)?).

ii. The unstable manifold W~ is, by inspection (or using the same method as

az = 2&3 —

1

8

for k > 3.
i.e., stable manifold is u

for the stable manifold), is given by ut = 0.

Comparing the coefficients of (u
(e) Sketch of stable and unstable manifolds:
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Figure 1: Sketch of stable and unstable manifolds.
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where z; € R.

—— unstable manifold

2. Consider the map



(a) Find the fixed points of this map.
(b) Use the corresponding linearized map to discuss the stability of the fixed points.

(c) Let z, = z, + ex,1 where ¢ € C. Show that, by choosing e appropriately, the
system (1) may expressed as

Znt1l = Q2p + By (Zn>3 + 32 (Zn>2 Zn+ B3 2n (zn)2 + B4 (En)g

and calculate the complex-valued constants «, 31, f2, 83 and [;.

(d) Explain briefly (without performing any calculations) how the system may rewrit-
ten in terms of a new variable ¢, as

Gut1 = G +bGC, + O(IGl")

and express b in terms of e.

(e) Using (d), show how the stability of the origin depends on b/e and thereby com-
ment upon the stability of the origin for the system (1).

Solution.

(a) Fixed points x = x* satisfy
ot =t — 2t + 222" — %)’ e, x*=2(z")";

hence, there are 3 fixed points, namely x* = 0, z* = 1/\/§ and z* = —1/\/5.

(b) By introducing the new variable y,, = 41, the recurrence relation may be ex-
pressed as the R? system

Tn+1 T Yn

the three fixed points in terms of (z,%) coordinates are (0,0), (1/v/2,1/v/2) and
(—1/+/2,—1/4/2). The Jacobian matrix of F is given by

0 1
DF = .
( 1412 (22, — ya)? 1 —6(22, —yy)* )
The eigenvalues of DF|(070) are given by the characteristic equation

(0= A0) (L= Ao) +1=0;
1+iV3

N-A+1=0 ie, XN= 5




since |A\o| = 1, no conclusions can be drawn about the stability of the fixed point
at (0,0) using linear analysis. The eigenvalues of DF|, 5 .,/ /5 are given by
the characteristic equation

(0 — Aﬂ/ﬁ) (—2 — Aﬂ/ﬁ) —5=0;  ie, Ayys=—1%V6

since [\, 5| > 1, we deduce that the fixed points at (1/v/2,1/4/2) and (=1/v/2, —1/1/2)

are unstable.
Following the method described in section 3.3 of the lecture notes, we let A =

DF|(070). An eigenvector ( ? ) of AT, associated with the eigenvalue )¢, is given

)

(L))~ ()=

Now, let z = (ey, €y) * (x,y) = (1,—Xo) * (z,y) =z — Agy. Then

Zntl = Tpgl — AoYnil
3
— yn - )\O [—:L’n + yn + 2 (an - yn) i| substituting from eqn (1)
3
- )\Oxn + (1 - >\0) Yn — 2>\0 (2$n - yn)
3
— )\OZTL - 2A0 (2.’];” - yn) since the characteristic equation is kg —Xp+1=0.

Notice that

247 = z—Ay+2T— Ay
22— (Ao + o)y
20 —2Re{ o}y

= 2.CE -,
so we have that
Zn+1 = )\Ozn — 2A0 (Zn + En>3
= Xozn— 20 [(20)° +3 (20)° Zn + 32, (Z0) + (20)°] - (2)

(iv) By introducing the new variable ¢, = z, + pz3 + ¢22Z, + r2z,z2 + 575, the

system may be expressed in the form
Cn+1 = AoCn + cubic and higher order terms;

by judiciously choosing the values of p, ¢, r and s, the terms involving 3, ZiCn
and Zi can be eliminated, leaving

Cor1 = AoCn + BC2C,, + higher order terms.
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The coefficient ¢3¢
b - —6/\0
(v) We have

. is the same as the coefficient of (z,)*Z, in eqn (2); ie.,

Gual’ = (oG +562C,) (RC, +BC,G ) + bigher order terms
= [Ao*[Gal® + (Mob + bAg) [¢al|* + higher order terms

1 b
= |GJ*+ 3 Re {)\—0} |Ca|* + higher order terms.

So |¢u| — 0 if Re {/\%} < 0 ; i.e., the fixed point at the origin is stable provided

that Re {/\%} < 0. Since we have here that b = —6)¢, the fixed point at the

origin is stable.
3. Consider the map
H,(z) = ptan™' z,

where x is a real-valued variable and p is a real-valued parameter.

(a) How many fixed points are there? Specify the ranges of values of u for which they
exist.

(b) Calculate the Schwarzian derivative of H,,.
(c) Describe the bifurcations which occur for
iLpu=1,
i, op=-1.
If there are flip bifurcations, state whether they are supercritical or subcritical.
You may wish to make use of the following Taylor series expansion:

for |z| < 1.

(d) Sketch the bifurcation diagram in the (p,z) plane; indicate the stability of the
fixed points in your diagram.

Solution.

(a) Fixed points z = z* satisfy the equation z* = ptan™!(z*). Clearly, there is a
fixed point at 2 = 0. Notice that tan™! z and z have the same sign, so there are
no nonzeros solutions of z* = ptan™! (z*) if u < 0. Also, the gradient of H,, is
given by

/ _ M
B =1



and H/,(0) = p Thus, for u > 0, H,(x) is strictly increasing for x € (—o00,0)
and strictly decreasing for x € (0,00). Hence, the line y = z intersects the graph
y = H,(x) at two further fixed points, namely =z} and z} = —xj, provided that
w> 1.

The Schwarzian derivative is defined as

H" 3 H" 2
Ds (=~ 3 (5
H;L 2

Hj,
and since
u 24 8pua? 2/
o)=L H@) = )=
I+ (1+ 22) (1422 (14 2?)
we have

by = s ()

(1422 (1+2?) 1+ 22
822 —2(1+2%) —62> 2
(14 22)° (14 22)°

Consider the bifurcation at u© = 1. Let us introduce ¢ where 0 < ¢ < 1. For
p € (1 —¢€1), only the fixed point ¥ = 0 exists; for p € (1,1 + ¢€), the fixed
points x, x; and z} all exist. The stability of fixed points is determined by
H)(z) = 1t5z. Clearly, the fixed point zj; = 0 is stable for u € (1 — ¢, 1) but
unstable for z € (1,1 + €). Now, since fixed points satisfy z* = ptan™! (z*), we
have

*

x
HI * — .
w(77) (1+ (2*)?) tan™t
For u € (1,1 + ¢€), we have z; = ¢ and x} = —0, say, where 0 < 0 < 1. Now,
recalling the Taylor series tan™t§ = § — % + .-+, we have
_ ) ~ ) ~ 1
HIIL((;) = (1482 tan—1(5) (1+52)(5—§> ~ 1+% <1
Hi(-06) = =0 ~ g ~ 1. <1

T 5 (8)

Hence, the fixed points z; and z} are stable for u € (1,1 4 €). Therefore, the
bifurcation at p = 1 is of the pitchfork type.

Consider the bifurcation at 4 = —1. In the vicinity of 4 = —1, only the fixed
point z;; = 0 exists. Since H, () = 1f5z, we see that the fixed point z, which

14z a’
is stable for 4 > —1, becomes unstable for 4 < —1; and at ¢ = —1 we have
H| (z;) = —1. Thus, we have a flip birfurcation. Since the Schwarzian derivative

is negative-valued (for all x), it is a supercritical flip bifurcation.
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Figure 2: Legend: black is unstable fixed point at x = 0; green is stable fixed point at x = 0;
red is pair of stable fixed points; blue is pair of stable period 2 points.

(d) Sketch: See figure 2.

4. (a) Suppose a continuous mapping G has a period-3 orbit (a, b, c) where a < b < c.

i. Show that GG has orbits of period 1 and period 2.
ii. Show that GG has orbits of prime period n for all n > 3.

(b) Consider the R? map represented as

Xpt1 = F(x,) (2)

Tn+1 Tn Yn +v
Xn4+1 = ’ Xp = ) F(x,) = ’
i < Ynt1 ) ( Yn ) ( ) < yr% - :C?L )

and v is a real-valued parameter.

where

i. Find the ( z ) fixed points of the map (2) in terms of v.



ii. If the map (2) undergoes a Hopf bifurcation, what can you infer about the
eigenvalues of the Jacobian matrix of derivatives of F?

iii. Find the value of v, and the corresponding < ;; ) point, at which the map
(2) undergoes a Hopf bifurcation.

Solution.

(a) Let us define Iy = [a,b] and I; = [b, ¢] and make the following observations
i. G(Iy) D I.
ii. G(I) 2 I, U1,
iii. If I is a closed interval and G(I) D I, then G has a fixed point in /.

iv. Suppose I, J are closed intervals. If G(I) O J, then there exists a closed
interval K C [ such that G(K) = J.

The last two observations can be established using the intermediate value theorem.

e We start by noting that (ii) and (iii) imply that G has a fixed point in I;.
Also, (i), (ii) and (iii) imply that G* has a fixed point in Iy, so that G has a
period-2 orbit. Thus, the period-1 and period-2 cases are proven.

e We have n > 3. Now we construct a nested sequence of closed intervals A,:
let Ay = I, (ii) and (iv) imply that there is a A; C Ay with G(A4;) = Ag =
I,. Similarly, there is a Ay C A; with G(A4y) = A; and so G?*(Ay) = Ay.
Proceeding similarly, the sequence

Ay DA DA DDA,y with GF(A) =Ay, E=1,2,....n—2,

can be constructed. The next interval in the sequence, A,,_; is constructed by
noting that G" (A, _2) = G(A4y) 2 Iy (using (ii)). Then, (iv) implies that
there is a 4,1 C A,_» with G"!(A,,_1) = I,. Finally since G"(4,_1) =
G(Ip) 2 I (using (i)), there exists a A, C A,y with G"(4,) = Ay =
I;. Now, by construction A, C Ay, so that G"(A4,) 2 A,. So (iii) then
implies that there exists a fixed point z* € A, with G"(z*) = z*. This is
a prime period-n point unless it is also fixed point of G¥ for k < n. But
this is impossible since 2* € Ay, k = 0,1,--- ,n gives that G*(z*) € I, for
k=1,2,...,n —2 and we also have G"!(z*) € I. (The case G"'(2*) €
Io N I; = {b} can be excluded since it would imply n = 3.)

(b) i. Fixed points satisfy

r=y—+v and y=1y>—a?
= ¥y = P-(@y+v)
e, y = —2wy—21°
2
. v
e,y = s (5).
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ii.

111

A1 = exp (i0) and Ay = exp (—io) where o # 0, 7.
1

0 . .
9z 2y ), the eigenvalues satisfy

The corresponding Jacobian matrix is (

O0—=NQRy—N+2r = 0 ie, N —=2y\+22=0

2y + /4y? — 8
ie., A = 2y x:yi\/yQ—Qx.

For Hopf bifurcation A = € where o # 0,7; i.e., A\; = € and \y = 7.

Then

Ay = 1 = determinant of Jacobian = 2x;
) 1 1
ie. r=— =——v.

7 27 y 2

Now, from (f), we have

——v = — , —tv—v—2%=—v
2 1+2v 2
. 9 1 1
ie., v o= = and so v=+—
2 V2

Fory:—\/ii,wehavex:%,y:%%—\%andso)\GR.

_ 1 1, _1_ 1 _ tio
Fory—\/i,wehaweaz:—2,y—2 \/iandso)\—e where o # 0, 7.
. . . . o 1 1 _ 1 1
i.e., Hopf bifurcation arises for v = -7 at v =3,y=5— 7
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