M4 Dynamical Systems

May 2005 - Questions and Answers
2 hours; best 3 answers count.

1. Consider the two-dimensional system

$$
\begin{aligned}
& x_{n+1}=-x_{n}+3 y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3}, \\
& y_{n+1}=-\frac{3}{2} x_{n}+\frac{7}{2} y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3},
\end{aligned}
$$

where $x_{i}, y_{i} \in \mathbb{R}$
(a) Show that there is a saddle-point at the origin.
(b) Give the definitions of the stable and unstable subspaces of the origin and find their equations.
(c) Introduce the vector $\binom{u_{n}^{+}}{u_{n}^{-}}$which is defined via

$$
\binom{x_{n}}{y_{n}}=\left(\begin{array}{ll}
a & 1 \\
1 & b
\end{array}\right)\binom{u_{n}^{+}}{u_{n}^{-}}
$$

where $\binom{a}{1}$ and $\binom{1}{b}$ are vectors aligned with the stable and unstable subspaces, respectively. Thereby, show that the system may be expressed in the form

$$
\begin{aligned}
& u_{n+1}^{+}=\alpha u_{n}^{+}, \\
& u_{n+1}^{-}=\beta u_{n}^{-}+\gamma\left(u_{n}^{+}\right)^{3}
\end{aligned}
$$

and evaluate the constants a, b, α, β and γ.
(d) State the stable manifold theorem and show that
i. the stable manifold is given exactly by

$$
u^{-}=\delta\left(u^{+}\right)^{3}
$$

ii. the unstable manifold is given exactly by

$$
u^{+}=\rho ;
$$

and evaluate the constants δ and ρ.
(e) Sketch the stable and unstable manifolds in the $\left(u^{+}, u^{-}\right)$plane. Include in your sketch a few representative orbits and indentify the stable and unstable subspaces. Solution.
(a) We have:

$$
\left.\begin{array}{l}
x_{n+1}=-x_{n}+3 y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3} \\
y_{n+1}=-\frac{3}{2} x_{n}+\frac{7}{2} y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3}
\end{array}\right\}
$$

$$
\Rightarrow \quad\binom{x_{n+1}}{y_{n+1}}=\mathbf{F}\binom{x_{n}}{y_{n}}=\binom{-x_{n}+3 y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3}}{-\frac{3}{2} x_{n}+\frac{7}{2} y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3}}
$$

Jacobian of $\mathbf{F}=D \mathbf{F}=\left(\begin{array}{cc}-1-\frac{45}{8}(x-y)^{2} & 3+\frac{45}{8}(x-y)^{2} \\ -\frac{3}{2}-\frac{45}{8}(x-y)^{2} & \frac{7}{2}+\frac{45}{8}(x-y)^{2}\end{array}\right)$
$\left.\Rightarrow \quad D \mathbf{F}\right|_{(0,0)}=\left(\begin{array}{cc}-1 & 3 \\ -\frac{3}{2} & \frac{7}{2}\end{array}\right)^{2}$.
Eigenvalues of $\left.D \mathbf{F}\right|_{(0,0)}$:

$$
\begin{aligned}
& (-1-\lambda)\left(\frac{7}{2}-\lambda\right)+\frac{9}{2}=0 \\
& \Rightarrow \quad \lambda^{2}-\frac{5}{2} \lambda+2=0 \\
& \Rightarrow \quad(2 \lambda-1)(\lambda-2)=0 \quad \Rightarrow \quad \lambda_{a}=\frac{1}{2}, \quad \lambda_{b}=2
\end{aligned}
$$

Since $\left|\lambda_{a}\right|<1$ and $\left|\lambda_{b}\right|>1$, there is a saddle-point at the origin.
(b) The stable subspace E^{+}is the span of eigenvectors associated with eigenvectors λ with $|\lambda|<1$. The unstable subspace E^{-}is the span of eigenvectors associated with eigenvectors λ with $|\lambda|>1$.
Eigenvectors of of $\left.D \mathbf{F}\right|_{(0,0)}$:

$$
\begin{aligned}
\left(\begin{array}{ll}
-1 & 3 \\
-\frac{3}{2} & \frac{7}{2}
\end{array}\right)\binom{x}{y}= & \frac{1}{2}\binom{x}{y} \quad \Rightarrow \quad \mathbf{e}_{a}=\binom{2}{1} \\
& \Rightarrow \quad \text { stable subspace: } \quad y=\frac{1}{2} x \\
\left(\begin{array}{cc}
-1 & 3 \\
-\frac{3}{2} & \frac{7}{2}
\end{array}\right)\binom{x}{y}= & 2\binom{x}{y} \quad \Rightarrow \quad \mathbf{e}_{b}=\binom{1}{1} \\
& \Rightarrow \quad \text { unstable subspace: } y=x
\end{aligned}
$$

Diagonalising matrix $S=\left(\begin{array}{ll}\mathbf{e}_{a} & \mathbf{e}_{b}\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)$

$$
\left.\left.\begin{array}{ll}
\text { i.e., } & \binom{u^{+}}{u^{-}}=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)\binom{x}{y} \\
\text { i.e., } & u_{n}^{+}=x_{n}-y_{n} \\
u_{n}^{-}=-x_{n}+2 y_{n}
\end{array}\right\} \quad \text { and } \quad \begin{array}{l}
x_{n}=2 u_{n}^{+}+u_{n}^{-} \\
y_{n}=u_{n}^{+}+u_{n}^{-}
\end{array}\right\}
$$

Rewriting system in terms of u^{+}and u^{-}:

$$
\begin{align*}
2 u_{n+1}^{+}+u_{n+1}^{-} & =-2 u_{n}^{+}-u_{n}^{-}+3 u_{n}^{+}+3 u_{n}^{-}-\frac{15}{8}\left(u_{n}^{+}\right)^{3} \\
& =u_{n}^{+}+2 u_{n}^{-}-\frac{15}{8}\left(u_{n}^{+}\right)^{3} \tag{1}\\
u_{n+1}^{+}+u_{n+1}^{-} & =-3 u_{n}^{+}-\frac{3}{2} u_{n}^{-}+\frac{7}{2} u_{n}^{+}+\frac{7}{2} u_{n}^{-}-\frac{15}{8}\left(u_{n}^{+}\right)^{3} \\
& =\frac{1}{2} u_{n}^{+}+2 u_{n}^{-}-\frac{15}{8}\left(u_{n}^{+}\right)^{3} \tag{2}
\end{align*}
$$

(1) - (2) gives:

$$
u_{n+1}^{+}=\frac{1}{2} u_{n}^{+}
$$

$[2 \times(2)]-(1)$ gives:

$$
u_{n+1}^{-}=2 u_{n}^{-}-\frac{15}{8}\left(u_{n}^{+}\right)^{3}
$$

(d) The stable manifold theorem asserts the existence of (i) an invariant stable manifold W^{+}defined by $\left\{\mathbf{x}: \mathbf{F}^{k}(\mathbf{x}) \rightarrow \mathbf{0}\right.$ as $\left.k \rightarrow \infty\right\}$; and (ii) an invariant unstable manifold W^{-}defined by $\left\{\mathbf{x}: \mathbf{F}^{k}(\mathbf{x}) \rightarrow \mathbf{0} \quad\right.$ as $\left.\quad k \rightarrow-\infty\right\}$.
i. The stable manifold W^{+}is expanded as

$$
\begin{aligned}
u_{n}^{-} & =a_{2}\left(u_{n}^{+}\right)^{2}+a_{3}\left(u_{n}^{+}\right)^{3}+\cdots \\
\Rightarrow \quad u_{n+1}^{-} & =a_{2}\left(u_{n+1}^{+}\right)^{2}+a_{3}\left(u_{n+1}^{+}\right)^{3}+\cdots \\
& =a_{2}\left(\frac{1}{2} u_{n}^{+}\right)^{2}+a_{3}\left(\frac{1}{2} u_{n}^{+}\right)^{3}+\text { cubic and higher orde } \\
& =2 u_{n}^{-}-\frac{15}{8}\left(u_{n}^{+}\right)^{3} \\
& =2\left[a_{2}\left(u_{n}^{+}\right)^{2}+a_{3}\left(u_{n}^{+}\right)^{3}+\cdots\right]-\frac{15}{8}\left(u_{n}^{+}\right)^{3}
\end{aligned}
$$

Comparing the coefficients of $\left(u_{n}^{+}\right)^{2}$ gives:

$$
\frac{1}{4} a_{2}=2 a_{2} \quad \Rightarrow \quad a_{2}=0
$$

Comparing the coefficients of $\left(u_{n}^{+}\right)^{3}$ gives:

$$
\frac{1}{8} a_{3}=2 a_{3}-\frac{15}{8} \quad \Rightarrow \quad a_{3}=1
$$

And $a_{k}=$ for $k>3$.
i.e., stable manifold is $u^{-}=\left(u^{+}\right)^{3}+O\left(\left(u^{+}\right)^{4}\right)$.
ii. The unstable manifold W^{-}is, by inspection (or using the same method as for the stable manifold), is given by $u^{+}=0$.
(e) Sketch of stable and unstable manifolds:

Figure 1: Sketch of stable and unstable manifolds.
(f) $u_{n+1}^{+}=\frac{1}{2} u_{n}^{+} \quad \Rightarrow \quad p_{n+1}=\frac{1}{2} p_{n}$

We have $q_{n}=\left(u_{n}^{+}\right)^{3}-u_{n}^{-}=\left(p_{n}\right)^{3}-u_{n}^{-}$, so $u_{n+1}^{-}=2 u_{n}^{-}-\frac{15}{8}\left(u_{n}^{+}\right)^{3}$ becomes:

$$
\begin{aligned}
\left(p_{n+1}\right)^{3}-q_{n+1} & =2\left(p_{n}\right)^{3}-2 q_{n}-\frac{15}{8}\left(p_{n}\right)^{3} \\
\text { i.e., } \frac{1}{8}\left(p_{n}\right)^{3}-q_{n+1} & =2\left(p_{n}\right)^{3}-2 q_{n}-\frac{15}{8}\left(p_{n}\right)^{3} \\
\Rightarrow q_{n+1} & =2 q_{n}
\end{aligned}
$$

2. Consider the map

$$
\begin{equation*}
x_{n+2}=x_{n+1}-x_{n}+2\left(2 x_{n}-x_{n+1}\right)^{3}, \tag{1}
\end{equation*}
$$

where $x_{i} \in \mathbb{R}$.
(a) Find the fixed points of this map.
(b) Use the corresponding linearized map to discuss the stability of the fixed points.
(c) Let $z_{n}=x_{n}+\epsilon x_{n+1}$ where $\epsilon \in \mathbb{C}$. Show that, by choosing ϵ appropriately, the system (1) may expressed as

$$
z_{n+1}=\alpha z_{n}+\beta_{1}\left(z_{n}\right)^{3}+\beta_{2}\left(z_{n}\right)^{2} \bar{z}_{n}+\beta_{3} z_{n}\left(\bar{z}_{n}\right)^{2}+\beta_{4}\left(\bar{z}_{n}\right)^{3}
$$

and calculate the complex-valued constants $\alpha, \beta_{1}, \beta_{2}, \beta_{3}$ and β_{4}.
(d) Explain briefly (without performing any calculations) how the system may rewritten in terms of a new variable ζ_{n} as

$$
\zeta_{n+1}=\alpha \zeta_{n}+b \zeta_{n}^{2} \bar{\zeta}_{n}+O\left(\left|\zeta_{n}\right|^{4}\right)
$$

and express b in terms of ϵ.
(e) Using (d), show how the stability of the origin depends on b / ϵ and thereby comment upon the stability of the origin for the system (1).

Solution.

(a) Fixed points $x=x^{*}$ satisfy

$$
x^{*}=x^{*}-x^{*}+2\left(2 x^{*}-x^{*}\right)^{3} ; \quad \text { i.e., } \quad x^{*}=2\left(x^{*}\right)^{3} ;
$$

hence, there are 3 fixed points, namely $x^{*}=0, x^{*}=1 / \sqrt{2}$ and $x^{*}=-1 / \sqrt{2}$.
(b) By introducing the new variable $y_{n}=x_{n+1}$, the recurrence relation may be expressed as the \mathbb{R}^{2} system

$$
\begin{equation*}
\binom{x_{n+1}}{y_{n+1}}=\mathbf{F}\binom{x_{n}}{y_{n}}=\binom{y_{n}}{-x_{n}+y_{n}+2\left(2 x_{n}-y_{n}\right)^{3}} \tag{1}
\end{equation*}
$$

the three fixed points in terms of (x, y) coordinates are $(0,0),(1 / \sqrt{2}, 1 / \sqrt{2})$ and $(-1 / \sqrt{2},-1 / \sqrt{ } 2)$. The Jacobian matrix of \mathbf{F} is given by

$$
D \mathbf{F}=\left(\begin{array}{cc}
0 & 1 \\
-1+12\left(2 x_{n}-y_{n}\right)^{2} & 1-6\left(2 x_{n}-y_{n}\right)^{2}
\end{array}\right) .
$$

The eigenvalues of $\left.D \mathbf{F}\right|_{(0,0)}$ are given by the characteristic equation

$$
\begin{aligned}
& \left(0-\lambda_{0}\right)\left(1-\lambda_{0}\right)+1=0 \\
& \lambda^{2}-\lambda+1=0 \quad \text { i.e., } \quad \lambda_{0}=\frac{1 \pm i \sqrt{3}}{2}
\end{aligned}
$$

since $\left|\lambda_{0}\right|=1$, no conclusions can be drawn about the stability of the fixed point at $(0,0)$ using linear analysis. The eigenvalues of $\left.D \mathbf{F}\right|_{(\pm 1 / \sqrt{2}, \pm 1 / \sqrt{2})}$ are given by the characteristic equation

$$
\left(0-\lambda_{ \pm 1 / \sqrt{2}}\right)\left(-2-\lambda_{ \pm 1 / \sqrt{2}}\right)-5=0 ; \quad \text { i.e., } \quad \lambda_{ \pm 1 / \sqrt{2}}=-1 \pm \sqrt{6}
$$

since $\left|\lambda_{ \pm 1 / \sqrt{2}}\right|>1$, we deduce that the fixed points at $(1 / \sqrt{2}, 1 / \sqrt{2})$ and $(-1 / \sqrt{2},-1 / \sqrt{2})$ are unstable.
(c) Following the method described in section 3.3 of the lecture notes, we let $A=$ $\left.D \mathbf{F}\right|_{(0,0)}$. An eigenvector $\binom{e_{x}}{e_{y}}$ of A^{T}, associated with the eigenvalue λ_{0}, is given via

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)\binom{e_{x}}{e_{y}}=\lambda_{0}\binom{e_{x}}{e_{y}} \quad \longrightarrow \quad\binom{e_{x}}{e_{y}}=\binom{1}{-\lambda_{0}}
$$

Now, let $z=\left(e_{x}, e_{y}\right) \cdot(x, y)=\left(1,-\lambda_{0}\right) \cdot(x, y)=x-\lambda_{0} y$. Then
$z_{n+1}=x_{n+1}-\lambda_{0} y_{n+1}$
$=y_{n}-\lambda_{0}\left[-x_{n}+y_{n}+2\left(2 x_{n}-y_{n}\right)^{3}\right]$
substituting from eqn (1)
$=\lambda_{0} x_{n}+\left(1-\lambda_{0}\right) y_{n}-2 \lambda_{0}\left(2 x_{n}-y_{n}\right)^{3}$
$=\lambda_{0} z_{n}-2 \lambda_{0}\left(2 x_{n}-y_{n}\right)^{3}$
since the characteristic equation is $\lambda_{0}^{2}-\lambda_{0}+1=0$.

Notice that

$$
\begin{aligned}
z+\bar{z} & =x-\lambda_{0} y+x-\overline{\lambda_{0}} y \\
& =2 x-\left(\lambda_{0}+\overline{\lambda_{0}}\right) y \\
& =2 x-2 \operatorname{Re}\left\{\lambda_{0}\right\} y \\
& =2 x-y
\end{aligned}
$$

so we have that

$$
z_{n+1}=\lambda_{0} z_{n}-2 \lambda_{0}\left(z_{n}+\bar{z}_{n}\right)^{3}
$$

$$
\begin{equation*}
=\lambda_{0} z_{n}-2 \lambda_{0}\left[\left(z_{n}\right)^{3}+3\left(z_{n}\right)^{2} \bar{z}_{n}+3 z_{n}\left(\bar{z}_{n}\right)^{2}+\left(\bar{z}_{n}\right)^{3}\right] . \tag{2}
\end{equation*}
$$

(iv) By introducing the new variable $\zeta_{n}=z_{n}+p z_{n}^{3}+q z_{n}^{2} \bar{z}_{n}+r z_{n} \bar{z}_{n}^{2}+s \bar{z}_{n}^{3}$, the system may be expressed in the form

$$
\zeta_{n+1}=\lambda_{0} \zeta_{n}+\text { cubic and higher order terms; }
$$

by judiciously choosing the values of p, q, r and s, the terms involving $\zeta_{n}^{3}, \bar{\zeta}_{n}^{2} \zeta_{n}$ and $\bar{\zeta}_{n}^{3}$ can be eliminated, leaving

$$
\zeta_{n+1}=\lambda_{0} \zeta_{n}+b \zeta_{n}^{2} \bar{\zeta}_{n}+\text { higher order terms }
$$

The coefficient $\zeta_{n}^{2} \bar{\zeta}_{n}$ is the same as the coefficient of $\left(z_{n}\right)^{2} \bar{z}_{n}$ in eqn (2); i.e., $b=-6 \lambda_{0}$.
(v) We have

$$
\begin{aligned}
\left|\zeta_{n+1}\right|^{2} & =\left(\lambda_{0} \zeta_{n}+b \zeta_{n}^{2} \bar{\zeta}_{n}\right)\left(\bar{\lambda}_{0} \bar{\zeta}_{n}+\overline{b \zeta}_{n}^{2} \zeta_{n}\right)+\text { higher order terms } \\
& =\left|\lambda_{0}\right|^{2}\left|\zeta_{n}\right|^{2}+\left(\lambda_{0} \bar{b}+b \bar{\lambda}_{0}\right)\left|\zeta_{n}\right|^{4}+\text { higher order terms } \\
& =\left|\zeta_{n}\right|^{2}+\frac{1}{2} \operatorname{Re}\left\{\frac{b}{\lambda_{0}}\right\}\left|\zeta_{n}\right|^{4}+\text { higher order terms. }
\end{aligned}
$$

So $\left|\zeta_{n}\right| \rightarrow 0$ if $\operatorname{Re}\left\{\frac{b}{\lambda_{0}}\right\}<0$; i.e., the fixed point at the origin is stable provided that $\operatorname{Re}\left\{\frac{b}{\lambda_{0}}\right\}<0$. Since we have here that $b=-6 \lambda_{0}$, the fixed point at the origin is stable.
3. Consider the map

$$
H_{\mu}(x)=\mu \tan ^{-1} x
$$

where x is a real-valued variable and μ is a real-valued parameter.
(a) How many fixed points are there? Specify the ranges of values of μ for which they exist.
(b) Calculate the Schwarzian derivative of H_{μ}.
(c) Describe the bifurcations which occur for

$$
\text { i. } \mu=1
$$

ii. $\mu=-1$.

If there are flip bifurcations, state whether they are supercritical or subcritical. You may wish to make use of the following Taylor series expansion:

$$
\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\cdots
$$

for $|x|<1$.
(d) Sketch the bifurcation diagram in the (μ, x) plane; indicate the stability of the fixed points in your diagram.

Solution.

(a) Fixed points $x=x^{*}$ satisfy the equation $x^{*}=\mu \tan ^{-1}\left(x^{*}\right)$. Clearly, there is a fixed point at $x_{a}^{*}=0$. Notice that $\tan ^{-1} x$ and x have the same sign, so there are no nonzeros solutions of $x^{*}=\mu \tan ^{-1}\left(x^{*}\right)$ if $\mu<0$. Also, the gradient of H_{μ} is given by

$$
H_{\mu}^{\prime}(x)=\frac{\mu}{1+x^{2}},
$$

and $H_{\mu}^{\prime}(0)=\mu$ Thus, for $\mu>0, H_{\mu}^{\prime}(x)$ is strictly increasing for $x \in(-\infty, 0)$ and strictly decreasing for $x \in(0, \infty)$. Hence, the line $y=x$ intersects the graph $y=H_{\mu}(x)$ at two further fixed points, namely x_{b}^{*} and $x_{c}^{*}=-x_{b}^{*}$, provided that $\mu>1$.
(b) The Schwarzian derivative is defined as

$$
D_{S}\left\{H_{\mu}\right\}=\frac{H_{\mu}^{\prime \prime \prime}}{H_{\mu}^{\prime}}-\frac{3}{2}\left(\frac{H_{\mu}^{\prime \prime}}{H_{\mu}^{\prime}}\right)^{2}
$$

and since

$$
H_{\mu}^{\prime}(x)=\frac{\mu}{1+x^{2}}, \quad H_{\mu}^{\prime \prime}(x)=-\frac{2 \mu x}{\left(1+x^{2}\right)^{2}}, \quad H_{\mu}^{\prime \prime \prime}(x)=\frac{8 \mu x^{2}}{\left(1+x^{2}\right)^{3}}-\frac{2 \mu}{\left(1+x^{2}\right)^{2}}
$$

we have

$$
\begin{aligned}
D_{S}\left\{H_{\mu}\right\} & =\frac{8 x^{2}}{\left(1+x^{2}\right)^{2}}-\frac{2}{\left(1+x^{2}\right)}-\frac{3}{2}\left(-\frac{2 x}{\left(1+x^{2}\right)}\right)^{2} \\
& =\frac{8 x^{2}-2\left(1+x^{2}\right)-6 x^{2}}{\left(1+x^{2}\right)^{2}}=-\frac{2}{\left(1+x^{2}\right)^{2}}
\end{aligned}
$$

(c) Consider the bifurcation at $\mu=1$. Let us introduce ϵ where $0<\epsilon \ll 1$. For $\mu \in(1-\epsilon, 1)$, only the fixed point $x_{a}^{*}=0$ exists; for $\mu \in(1,1+\epsilon)$, the fixed points x_{a}^{*}, x_{b}^{*} and x_{c}^{*} all exist. The stability of fixed points is determined by $H_{\mu}^{\prime}(x)=\frac{\mu}{1+x^{2}}$. Clearly, the fixed point $x_{a}^{*}=0$ is stable for $\mu \in(1-\epsilon, 1)$ but unstable for $\mu \in(1,1+\epsilon)$. Now, since fixed points satisfy $x^{*}=\mu \tan ^{-1}\left(x^{*}\right)$, we have

$$
H_{\mu}^{\prime}\left(x^{*}\right)=\frac{x^{*}}{\left(1+\left(x^{*}\right)^{2}\right) \tan ^{-1} x^{*}}
$$

For $\mu \in(1,1+\epsilon)$, we have $x_{b}^{*}=\delta$ and $x_{c}^{*}=-\delta$, say, where $0<\delta \ll 1$. Now, recalling the Taylor series $\tan ^{-1} \delta=\delta-\frac{\delta^{c}}{3}+\cdots$, we have

$$
\left.\begin{array}{l}
H_{\mu}^{\prime}(\delta)=\frac{\delta}{\left(1+\delta^{2}\right) \tan ^{-1}(\delta)} \approx \frac{\delta}{\left(1+\delta^{2}\right)\left(\delta-\frac{\delta^{3}}{3}\right)} \approx \frac{1}{1+\frac{2 \delta^{2}}{3}}<1 \\
H_{\mu}^{\prime}(-\delta)=\frac{\delta}{\left(1+(-\delta)^{2}\right) \tan ^{-1}(-\delta)} \approx \frac{1}{\left(1+\delta^{2}\right)\left(\delta-\frac{\delta^{3}}{3}\right)} \approx \frac{1}{1+\frac{2 \delta^{2}}{3}}<1
\end{array}\right\}
$$

Hence, the fixed points x_{b}^{*} and x_{c}^{*} are stable for $\mu \in(1,1+\epsilon)$. Therefore, the bifurcation at $\mu=1$ is of the pitchfork type.
Consider the bifurcation at $\mu=-1$. In the vicinity of $\mu=-1$, only the fixed point $x_{a}^{*}=0$ exists. Since $H_{\mu}^{\prime}(x)=\frac{\mu}{1+x^{2}}$, we see that the fixed point x_{a}^{*}, which is stable for $\mu>-1$, becomes unstable for $\mu<-1$; and at $\mu=-1$ we have $H_{\mu}^{\prime}\left(x_{a}^{*}\right)=-1$. Thus, we have a flip birfurcation. Since the Schwarzian derivative is negative-valued (for all x), it is a supercritical flip bifurcation.

Figure 2: Legend: black is unstable fixed point at $x=0$; green is stable fixed point at $x=0$; red is pair of stable fixed points; blue is pair of stable period 2 points.
(d) Sketch: See figure 2.
4. (a) Suppose a continuous mapping G has a period-3 orbit (a, b, c) where $a<b<c$.
i. Show that G has orbits of period 1 and period 2 .
ii. Show that G has orbits of prime period n for all $n>3$.
(b) Consider the \mathbb{R}^{2} map represented as

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{F}\left(\mathbf{x}_{n}\right) \tag{2}
\end{equation*}
$$

where

$$
\mathbf{x}_{n+1}=\binom{x_{n+1}}{y_{n+1}}, \quad \mathbf{x}_{n}=\binom{x_{n}}{y_{n}}, \quad \mathbf{F}\left(\mathbf{x}_{n}\right)=\binom{y_{n}+\nu}{y_{n}^{2}-x_{n}^{2}}
$$

and ν is a real-valued parameter.
i. Find the $\binom{x}{y}$ fixed points of the map (2) in terms of ν.
ii. If the map (2) undergoes a Hopf bifurcation, what can you infer about the eigenvalues of the Jacobian matrix of derivatives of \mathbf{F} ?
iii. Find the value of ν, and the corresponding $\binom{x}{y}$ point, at which the map (2) undergoes a Hopf bifurcation.

Solution.

(a) Let us define $I_{0}=[a, b]$ and $I_{1}=[b, c]$ and make the following observations
i. $G\left(I_{0}\right) \supseteq I_{1}$.
ii. $G\left(I_{1}\right) \supseteq I_{0} \cup I_{1}$.
iii. If I is a closed interval and $G(I) \supseteq I$, then G has a fixed point in I.
iv. Suppose I, J are closed intervals. If $G(I) \supseteq J$, then there exists a closed interval $K \subseteq I$ such that $G(K)=J$.
The last two observations can be established using the intermediate value theorem.

- We start by noting that (ii) and (iii) imply that G has a fixed point in I_{1}. Also, (i), (ii) and (iii) imply that G^{2} has a fixed point in I_{0}, so that G has a period-2 orbit. Thus, the period-1 and period-2 cases are proven.
- We have $n>3$. Now we construct a nested sequence of closed intervals A_{n} : let $A_{0}=I_{1}$, (ii) and (iv) imply that there is a $A_{1} \subseteq A_{0}$ with $G\left(A_{1}\right)=A_{0}=$ I_{1}. Similarly, there is a $A_{2} \subseteq A_{1}$ with $G\left(A_{2}\right)=A_{1}$ and so $G^{2}\left(A_{2}\right)=A_{0}$. Proceeding similarly, the sequence

$$
A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \cdots \supseteq A_{n-2}, \quad \text { with } \quad G^{k}\left(A_{k}\right)=A_{0}, \quad k=1,2, \ldots, n-2,
$$

can be constructed. The next interval in the sequence, A_{n-1} is constructed by noting that $G^{n-1}\left(A_{n-2}\right)=G\left(A_{0}\right) \supseteq I_{0}$ (using (ii)). Then, (iv) implies that there is a $A_{n-1} \subseteq A_{n-2}$ with $G^{n-1}\left(A_{n-1}\right)=I_{0}$. Finally since $G^{n}\left(A_{n-1}\right)=$ $G\left(I_{0}\right) \supseteq I_{1}$ (using (i)), there exists a $A_{n} \subseteq A_{n-1}$ with $G^{n}\left(A_{n}\right)=A_{0}=$ I_{1}. Now, by construction $A_{n} \subseteq A_{0}$, so that $G^{n}\left(A_{n}\right) \supseteq A_{n}$. So (iii) then implies that there exists a fixed point $x^{\star} \in A_{n}$ with $G^{n}\left(x^{\star}\right)=x^{\star}$. This is a prime period- n point unless it is also fixed point of G^{k} for $k<n$. But this is impossible since $x^{\star} \in A_{k}, k=0,1, \cdots, n$ gives that $G^{k}\left(x^{\star}\right) \in I_{1}$ for $k=1,2, \ldots, n-2$ and we also have $G^{n-1}\left(x^{\star}\right) \in I_{0}$. (The case $G^{n-1}\left(x^{\star}\right) \in$ $I_{0} \cap I_{1}=\{b\}$ can be excluded since it would imply $n=3$.)
(b) i. Fixed points satisfy

$$
\begin{array}{cccc}
x=y+\nu & & \text { and } & y=y^{2}-x^{2} \\
\Rightarrow & y & =y^{2}-(y+\nu)^{2} \\
\text { i.e., } & y & =-2 \nu y-\nu^{2} \\
\text { i.e., } & y & =-\frac{\nu^{2}}{1+2 \nu}
\end{array}
$$

ii. $\lambda_{1}=\exp (i \sigma)$ and $\lambda_{2}=\exp (-i \sigma)$ where $\sigma \neq 0, \pi$.
iii. The corresponding Jacobian matrix is $\left(\begin{array}{cc}0 & 1 \\ -2 x & 2 y\end{array}\right)$; the eigenvalues satisfy

$$
\begin{aligned}
(0-\lambda)(2 y-\lambda)+2 x & =0 \quad \text { i.e., } \quad \lambda^{2}-2 y \lambda+2 x=0 \\
\text { i.e., } \quad \lambda & =\frac{2 y \pm \sqrt{4 y^{2}-8 x}}{2}=y \pm \sqrt{y^{2}-2 x} .
\end{aligned}
$$

For Hopf bifurcation $\lambda=e^{i \sigma}$ where $\sigma \neq 0$, π; i.e., $\lambda_{1}=e^{i \sigma}$ and $\lambda_{2}=e^{-i \sigma}$. Then

$$
\begin{aligned}
& \lambda_{1} \lambda_{2}=1=\text { determinant of Jacobian }=2 x ; \\
& \text { i.e. } \quad x=\frac{1}{2}, \quad y=\frac{1}{2}-\nu .
\end{aligned}
$$

Now, from (\dagger), we have

$$
\begin{aligned}
\frac{1}{2}-\nu & =-\frac{\nu^{2}}{1+2 \nu} \quad \text { i.e., } \quad \frac{1}{2}+\nu-\nu-2 \nu^{2}=-\nu^{2} \\
\text { i.e., } \quad \nu^{2} & =\frac{1}{2} \quad \text { and so } \quad \nu= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

For $\nu=-\frac{1}{\sqrt{2}}$, we have $x=\frac{1}{2}, y=\frac{1}{2}+\frac{1}{\sqrt{2}}$ and so $\lambda \in \mathbb{R}$.
For $\nu=\frac{1}{\sqrt{2}}$, we have $x=\frac{1}{2}, y=\frac{1}{2}-\frac{1}{\sqrt{2}}$ and so $\lambda=e^{ \pm i \sigma}$ where $\sigma \neq 0, \pi$.
i.e., Hopf bifurcation arises for $\nu=-\frac{1}{\sqrt{2}}$ at $x=\frac{1}{2}, y=\frac{1}{2}-\frac{1}{\sqrt{2}}$.

