M4 Dynamical Systems
May 2005 — Questions and Answers

2 hours; best 3 answers count.

1. Consider the two-dimensional system

15 :
Tpt1 = —Tp + 3yn - § (177 - yn)s )

7 15

3 3
Yn+1 = 7§xn + §yn - § (In - yn) )

where z;,y; € R.

(a) Show that there is a saddle-point at the origin.

(b) Give the definitions of the stable and unstable subspaces of the origin and find
their equations.

+
(¢) Introduce the vector ( Z’j ) which is defined via

T, \ _ (a1l b
yo ) L1 b u, )’
where ( (11 ) and ( 11) are vectors aligned with the stable and unstable sub-

spaces, respectively. Thereby, show that the system may be expressed in the
form

i = ad,
U = By + ()’
and evaluate the constants a, b, a, f and ~.
(d) State the stable manifold theorem and show that

i. the stable manifold is given ezactly by
u =90 (1t+)3 ;
ii. the unstable manifold is given ezactly by
ut =p;

and evaluate the constants ¢ and p.
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(e) Sketch the stable and unstable manifolds in the (u*,u™) plane. Include in your
sketch a few representative orbits and indentify the stable and unstable subspaces.

Solution.

Tng1 = —Tp *FByn_QI_yn2
(a) We have: i ( )

Ynt1 = ; + yn - (In - yn)a
_ _ 15 _ 3
= ( In+1 ) _ F ( T, ) _ ( 3x7z + 37yn 815(In yn) 3 )
Yn+1 Yn —5Tnt+ 5Yn — % (Tn = Yn)
1 45 )2 45 (0 402
Jacobian of F = DF = ( 3 & (z y)g 5 3 (z—v) >
L@-
-1 3
= DF|gg = ( 31
2 2
Eigenvalues of DF|):

(—1—A>(§— >+§:o

5
NM—ZA+2=0
SAt
= RA-1)(A=2)=0 = Ao =

Since [A,] < 1 and |Ay| > 1, there is a saddle-point at the origin.

(b) The stable subspace E™ is the span of eigenvectors associated with eigenvectors
A with |A| < 1. The unstable subspace E~ is the span of eigenvectors associated
with eigenvectors A with || > 1.

Eigenvectors of of DF|:

(33)0)-:0G) = =-(1)
=33 /\v) 2\y 1
1
= stable subspace: y = PRl
-1 3 T T 1
=2
(—%%)(y) (y) (1)
= unstable subspace:



(c) Comparing the coefficients of (u)? gives:

2 1 1 15
Diagonalising matrix S = ( e, € ) = ( 11 ) 3B = 2a3 — 3 = az =1
. ut 1 -1 T And a;, = for k > 3.
e ( u” ) - ( -1 2 ) ( y ) i.e., stable manifold is u~ = (u™)® + O((u™)*).
) ut =z, — yn T, = 2u} +u; ii. The unstable manifold W~ is, by inspection (or using the same method as
L&, /u; = —x, + 2y, } and Yo = ut + u ' } for the stable manifold), is given by ut = 0.

. . _ (e) Sketch of stable and unstable manifolds:
Rewriting system in terms of u* and u™:

ity = —2u —u, + 3u) 4 Buy, — 12 (uf)’? AT T T T 771171 ] 1\ T 118 \sx =7
I I T N—
= uf +2u; — B (u))? (1) IEEERAREE N BB RN 2

- 3u- 4 1 Ty — 15 ()3 1117771771111 188N ~N—
Uy F Uy = —3UI—§%+§UIJ§§%—i(ul) sl 171 AN NS

— Lt — 15, 571 7 BRI N
= Uy +2u; — 3 (uy) ) Vi AT
T R
_ . . 7 7 | No—— /
(1) — (2) gives: U= 0.0 1 hododiodootsdismaisodobosimaracstont, L

-] 7 —X Mt ;7
T i 177777 NNV s s L
Upyy = U, 117 7 NNV L L L L L)
2 1777/ NNVIE b L L L
o577 /=Ny by
2% (2)] = (1) gives: 17 BRI RN
: 3
] A J
i = 2 ()’ od/ SEUSESSSEREE
8 -1.0 .0, 0.5 1.0

ut
(d) The stable manifold theorem asserts the existence of (i) an invariant stable mani- — unstable manifold < stable subspace

fold W+ defined by {x: F¥(x) =0 as k — oo}; and (ii) an invariant unstable stable manifold

manifold W~ defined by {x:F¥(x) -0 as k— —oo}.
i. The stable manifold W7 is expanded as

Figure 1: Sketch of stable and unstable manifolds.

u;[)2+a3 (u::)3+

u, = a2

+ = Lyt _1
= Uy = a2 () 1)2 +as (U;H)J +e () tnia = 3 :>3 ?Hl N 23pn _ . - 15 3
We have g, = (u})” —u, = (pn)” —u,, 50 U, = 2u, — 2 (u;})” becomes:

I IR
= ao 7u:: + as 7u:: —~+ cubic and higher order terms -
2 2 3 3 15, s
15 5 (pn+1) — Q1 = 2 (pn) —2q, — § (pn)
_ - +
= 2un—§(un) . 1 3 - 9 3_9 15 3
5 3 15 3 Le., 8 (pn) —Gny1 = (pn) — 4qn — g (pn)
_ +
= 2 [az (un) + a3 (un) + - } -y (un) = g1 = 20
Comparing the coefficients of (u; )2 gives: 2. Consider the map ‘
1 Tpnt2 = Tpyl — Tp + 2(21’" - In-%—l)d ) (1)
1(12 = 2ay = az =0 where x; € R.



(a) Find the fixed points of this map.
(b) Use the corresponding linearized map to discuss the stability of the fixed points.

(c) Let z, = z, + €x,41 where € € C. Show that, by choosing € appropriately, the
system (1) may expressed as

Zn4+1 = 2y + ﬁl (Zn)‘i + ﬁZ (Zn)2zn + ﬂ?) Zn (271)2 + ﬂ4 (zn)3

and calculate the complex-valued constants «, f1, B2, 83 and Sy.

(d) Explain briefly (without performing any calculations) how the system may rewrit-
ten in terms of a new variable ¢, as

C’n+1 = a(’n + bCZZn + O(|Clz‘4)

and express b in terms of e.

(e) Using (d), show how the stability of the origin depends on b/e and thereby com-
ment upon the stability of the origin for the system (1).

Solution.

(a) Fixed points z = z* satisfy
ot =at — a2z —a*)? ie, az*=2(z*);

hence, there are 3 fixed points, namely z* = 0, 2* = 1/v/2 and 2* = —1//2.

(b) By introducing the new variable y, = x,1, the recurrence relation may be ex-
pressed as the R? system

Tnt1 Tn Yn
( Yn+1 ) ( Yn ) ( —Tn + Yn +2 (2xn - yn)s ) ( )

the three fixed points in terms of (z,%) coordinates are (0,0), (1/v/2,1/4/2) and
(=1/+/2,—1/+/2). The Jacobian matrix of F' is given by

0 1
DF = .
( —1412220 —yn)® 1 =622, — yn)® )
The eigenvalues of DF‘(o,o) are given by the characteristic equation

(O*A())(l*/\o)‘Fl:O,
IREINES

N_A+1=0 ie, X 5

~

since [Xg| = 1, no conclusions can be drawn about the stability of the fixed point
at (0,0) using linear analysis. The eigenvalues of DF\( +1/v3.41/v3) are given by
the characteristic equation

(0 - Aﬂ/\/é) (—2 - )‘11/\/5) -5=0; Le, )\11/\/5 =-1=+ \/6§

since | Ay, 5] > 1, we deduce that the fixed points at (1/3/2,1/+/2) and (=1/v/2, —1/1/2)
are unstable.

Following the method described in section 3.3 of the lecture notes, we let A =

DF|(0,0). An eigenvector < Zz ) of AT, associated with the eigenvalue ), is given

(V) -~(2) = (5)-(4)
Now, let = = (eg,e,) * (2,y) = (1, —Ao) * (z,y) = = — Aoy. Then

Zntl = Tyl — AoYntl

Yo — Ao [—Tn + Yo + 2 (23, — y")?’]
= Aon + (1= o) yn — 200 (225 — !ln)g
Moz — 220 (22, — yn)?

substituting from eqn (1)

since the characteristic equation is A3 — Xg + 1 = 0.

Notice that

24z T =Xy + T — Ny
= 2r-— (/\o + )\70) )
2z —2Re{ Mo}y
= 2z —vy,
so we have that
Zntl = Aozn — 2X0 (Zn + 2n)3
= Xozn — 2% [(22)° + 3 (20)° Zn + 32, (Z0)” + (20)°] - (2)

(iv) By introducing the new variable ¢, = z, + pz;o’b + qzﬁ?n + rznifb + 52‘37 the
system may be expressed in the form

Cnt+1 = Aoy + cubic and higher order terms;

R . . . 3 =2
by judiciously choosing the values of p, ¢, 7 and s, the terms involving 3, ¢,C,
and Zn can be eliminated, leaving

Cor1 = MG + bC2C,, + higher order terms.
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The coefficient ¢2C,, is the same as the coefficient of (z,)*Z, in eqn (2); i.e.,
b == —6/\0

(v) We have
\Cn+1|2 = ()\oCn + b(fLZn) (XOZ,, + Ei(n) + higher order terms
= |Xol’|Gal® + (Mob + bXo) |¢n|* + higher order terms

1 b
= |GS+ 5 Re {)\—0} |€a|* + higher order terms.

So [y — 0if Re {%} < 0 ; i.e., the fixed point at the origin is stable provided

that Re {)‘%} < 0. Since we have here that b = —6)\, the fixed point at the

origin is stable.

3. Consider the map

H,(v)=ptan 'z,

where z is a real-valued variable and p is a real-valued parameter.

(a) How many fixed points are there? Specify the ranges of values of u for which they

exist.

(b) Calculate the Schwarzian derivative of H,.

(c) Describe the bifurcations which occur for

Lp=1,

ih.op=-1.
If there are flip bifurcations, state whether they are supercritical or subcritical.
You may wish to make use of the following Taylor series expansion:

. 3 2b
tan r=0——+——-,
3 5

for x| < 1.

(d) Sketch the bifurcation diagram in the (p,z) plane; indicate the stability of the

fixed points in your diagram.

Solution.

(a) Fixed points z = z* satisfy the equation z* = ptan™! (z*). Clearly, there is a

fixed point at 7 = 0. Notice that tan~' z and x have the same sign, so there are
no nonzeros solutions of z* = ptan™ (z*) if p < 0. Also, the gradient of H, is
given by

RN
H‘u('l’)f 1“!’1‘27

7

~

and H,(0) = p Thus, for 4 > 0, H,,(z) is strictly increasing for z € (—00,0)
and strictly decreasing for z € (0,00). Hence, the line y = z intersects the graph
y = H,(z) at two further fixed points, namely z; and z} = —z;, provided that
> 1.

The Schwarzian derivative is defined as

H/// 3 H// 2
Ds{H,} = s (J)
H"L 2 HL
and since

2ux H(x) = 8ux? B 2u

(1+a2)% " (1+22)°  (1+22)%

Hi(e)= . Hi@)=—

T

we have

Ds{H,} — 8 2 _g(_( 22 ))2

(1+a2)? (1+42?) 1+ 22
B 8x2—2(1+m2)—6x277 2
(1 ey (1 ey

Consider the bifurcation at g = 1. Let us introduce € where 0 < ¢ < 1. For
i € (1 —¢1), only the fixed point z = 0 exists; for p € (1,1 + ¢), the fixed
points z, x; and z all exist. The stability of fixed points is determined by
H|(z) = $£5. Clearly, the fixed point z} = 0 is stable for 4 € (1 —¢,1) but
unstable for g € (1,1 + ¢€). Now, since fixed points satisfy z* = ptan™! (z*), we
have

*

x
H@Y) = .
W) (1+ (z%)?) tan~L 2
For € (1,1 +¢€), we have j = § and zF = —0, say, where 0 < 0 < 1. Now,
recalling the Taylor series tan™!d = § — % + -+, we have
_ 5 ~ 5 o1
HL((;) — (1+62)tan1(s) (1+52)(5,%3) ~ 1+2f’% <1
1(_8S) — —4 ~ ) ~ 1
Hu( d) = A+ (=0 tan—1(—3) (Hp)(é,g) ~ 1422 <1

Hence, the fixed points xj and % are stable for u € (1,1 + €). Therefore, the
bifurcation at p = 1 is of the pitchfork type.
Consider the bifurcation at 4 = —1. In the vicinity of y = —1, only the fixed

point a; = 0 exists. Since H)(r) = {5, we see that the fixed point z, which
is stable for ;1 > —1, becomes unstable for y < —1; and at p = —1 we have
H] (x}) = —1. Thus, we have a flip birfurcation. Since the Schwarzian derivative

is negative-valued (for all z), it is a supercritical flip bifurcation.
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Figure 2: Legend: black is unstable fixed point at x = 0; green is stable fixed point at x = 0;
red is pair of stable fixed points; blue is pair of stable period 2 points.

(d) Sketch: See figure 2.

4. (a) Suppose a continuous mapping G has a period-3 orbit (a, b, c) where a < b < c.
i. Show that G has orbits of period 1 and period 2.
ii. Show that G has orbits of prime period n for all n > 3.

(b) Consider the R? map represented as

Xn+1l = F(Xn) (2)

Tnt1 Tn Yn +v
Xpt1 = 5 Xp = F Xn) = ;
a= (o) (o) mow=( )

and v is a real-valued parameter.

where

i. Find the ( ; ) fixed points of the map (2) in terms of v.

ii. If the map (2) undergoes a Hopf bifurcation, what can you infer about the
eigenvalues of the Jacobian matrix of derivatives of F?

iii. Find the value of v, and the corresponding < ; ) point, at which the map
(2) undergoes a Hopf bifurcation.

Solution.

(a) Let us define Iy = [a,b] and I} = [b, ¢] and make the following observations
i. G(Ip) 2 I.
ii. G(I)) 2 IhyU 1.
ili. If I is a closed interval and G(I) D I, then G has a fixed point in I.
iv. Suppose I, J are closed intervals. If G(I) D J, then there exists a closed
interval K C I such that G(K) = J.
The last two observations can be established using the intermediate value theorem.
e We start by noting that (ii) and (iii) imply that G has a fixed point in .
Also, (i), (ii) and (iii) imply that G has a fixed point in I, so that G has a
period-2 orbit. Thus, the period-1 and period-2 cases are proven.
e We have n > 3. Now we construct a nested sequence of closed intervals A,:
let Ay = Iy, (ii) and (iv) imply that there is a A; C A with G(4;) = Ay =
I,. Similarly, there is a Ay C A; with G(Ay) = A; and so G?(4;) = Ap.
Proceeding similarly, the sequence

AOQAlgAQQ"'QAn,L with Gk(Ak>:A07 k:172,..4,n727

can be constructed. The next interval in the sequence, A,,_; is constructed by
noting that G""1(A,_2) = G(4) 2 Iy (using (ii)). Then, (iv) implies that
there is a A,_; C A,_» with G""1(A,_;) = I,. Finally since G"(A,_;) =
G(ly) 2 I, (using (i)), there exists a A, C A, with G"(4,) = Ay =
I;. Now, by construction A, C A, so that G"(4,) 2 A,. So (iii) then
implies that there exists a fixed point z* € A, with G"(2*) = 2z*. This is
a prime period-n point unless it is also fixed point of G* for k < n. But
this is impossible since 2* € A, k = 0,1,--+ ,n gives that G*(z*) € I, for
k=1,2,...,n — 2 and we also have G *(2*) € I;. (The case G"1(z*) €
IyN I = {b} can be excluded since it would imply n = 3.)

(b) 1. Fixed points satisfy

T=y+v and y=1y°—a°
=y = P-(y+v)
ie., y = —2vy-— V2
2
. v
R (1):
10



ii. A\ =exp (io) and Ay = exp (—io) where o # 0, 7.

0 1

Cor 9y > the eigenvalues satisfy

iii. The corresponding Jacobian matrix is <

O0-=NQ2y—N+2r = 0 ie, M=2yA+22=0

/ 2 _

ie., A=

For Hopf bifurcation A = € where o # 0,7; i.e., \; = € and Xy = 7.
Then

A1A2 = 1 = determinant of Jacobian = 2z;
1 1

ie r=-, =——v.
2 YT

1 v?
3V = “Trw §+I/—V—2112——l/2
e 2 and so il
Le., Vo= - nc v=+—
V2
Forl/:—%,wehavex:%,y:%Jr%andso)\eR.
For v = %, we have z = %7 Y= % — % and so A = e where o # 0, 7.
i.e., Hopf bifurcation arises fOI‘V:*% atm:%,y:%f%A
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