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Preface

Dynamical systems originates in Newtonian mechanics and the study of differential equations. It
starts where the study of differential equations and their solutions ends; namely, the study of dynamical
systems attempts to cope with two problems:

(i) most systems of differential equations are either impossible to solve in closed form, or their
solutions are so complicated as to be uninformative; and

(ii) explicit solutions generally offer quantitative, not qualitative, information.

Let us illustrate this contention with an example. The solutions to the non-linear (‘true’) friction-
less pendulum

(0.0.1) ẍ = −mg

l
sin(x)

can be expressed, using conservation of energy, in the implicit form as

(0.0.2) t =

∫ x

x0

dy
√

2E + mg
l
cos(y)

.

This integral tells us surprisingly little about the solution x = x(t) – without some knowledge of elliptic
integrals.

On the other hand, we will develop tools to study differential equations like (0.0.1), and these tools
will lead to insights where we have know explicit solutions, like when the pendulum is ‘jiggled’. This
leads to the fascinating world of chaos...

A note. These notes are marked as a Draft. This is because they will be revised as the course
progresses. The cover page contains information on when the present version was made.

A final, non-draft, version will be made available in time for the May 2011 exam diet.

v
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CHAPTER 1

Continuous and discrete dynamical systems

1.1. What is a dynamical system?

A dynamical system (DS) consists of:

(i) A state space M , a point x of which defines the state of a system. M can be R
d, a region of

R
d (e.g., the interval [0, 1], the sphere S2), Cd, the set of all sequences of coin tosses, etc.

(ii) An independent variable (time t) which can be
• continuous, t ∈ R;
• discrete, t = n ∈ Z (or n ∈ N).

(iii) A rule describing the evolution of the system in time.
• For continuous-time DS, it is given by a system of differential equations (DE):

ẋ = f(x, t), where x ∈ M ⊂ R
d, f : M × R → R

d,

with the associated flow mapping ϕt(x) = x(t) where x(t) solves the DE with the initial
condition x(0) = x.

• For discrete-time DS, it is given by a difference equation (also called a recurrence relation
or iterated map):

xn+1 = F(xn, n), where x ∈ M, F : M × Z → M.

Remarks:

• Higher-order difference equations can be turned into sets of first-order ones.
• Non-autonomous difference equations (i.e., with F depending explicitly on n) can be turned
into autonomous ones by introducing an additional dependent variable, m say, obeying
mn+1 = mn + 1.

• Similarly, higher-order differential equations can be transformed into sets of first-order dif-
ferential equations, and non-autonomous differential equations can be transformed into au-
tonomous ones.

1.2. Examples of dynamical systems

1.2.1. Particle dynamics. The position x ∈ R
3 of a particle of mass m moving under the action

of a force G(x) is governed by Newton’s law mẍ = G. The DS description ẏ = f(y) is obtained by
taking

y =

(

y1

y2

)

=

(

x
mẋ

)

and f =

(

m−1y2

G

)

.

1.2.2. The Lorenz equations. An idealised model of convection in the atmosphere is given by
the three ordinary differential equations

(1.2.1) ẋ = σ(y − x), ẏ = ρx− y − xz, ż = xy − βz,

where σ, ρ and β are positive constants [see Strogatz, chapter 9 for a nice exposition].

1.2.3. Population dynamics. Discrete dynamical systems arise in models of the evolution of
the population of animal species: in these models, the dependent variables xn represent the number of
individuals of each species at generation n. For a single species, a simple model is given by the map

xn+1 = xnr(xn),

1
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(a) The Lorenz attractor for the Lorenz equations

(1.2.1) with σ = 10, r = 28 and β = 8
3
.
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(b) A ‘cobweb’ diagram of the logistic map (1.2.2) with
µ = 4.

Figure 1.2.1. The phase portraits of two dynamical systems.

where r(x) is the reproductive rate (difference between birth and death rates), a decreasing function of
x. A standard choice for r(x) is µ(1− x), where µ is a positive constant; this gives the logistic map

(1.2.2) xn+1 = µxn(1− xn).

Note that the state space M can be taken to be [0, 1] when 0 ≤ µ ≤ 4; attention is often restricted
to [0, 1] even when µ > 4. The dynamics of this system, which we will study in some detail, depends
on the value of µ and can be very complicated, as numerical simulations demonstrate. Another model
takes r(x) = µ exp(−x); it has a dynamics similar to that of the logistic map. [See Strogatz, sections

10.0-5 or Alligood, Sauer and York, sections 1.2 and 1.5] Worksheet 1

1.2.4. The bouncing ball. A physical system governed by a discrete mapping is provided by a
model of an elastic ball bouncing on a table which is vibrating vertically. Let us derive this mapping.
Let U(tn) be the downward velocity of the ball immediately before the nth impact with the table at
time tn, and let V (tn) be the upward velocity of the ball immediately after the impact. If the velocity
of the table (positive upward) is given by W (t), the impact is modelled by

V (tn)−W (tn) = α[U(tn) +W (tn)],

where 0 < α < 1 is a constant called the restitution coefficient. Between impacts, the ball is uniformly
decelerated by gravity; assuming the vertical displacement of the table is negligible, this implies that
the time between successive impacts is1

tn+1 − tn =
U(tn+1)− (−V (tn) )

g
,

where g is the acceleration of gravity, and the relationship between velocities

U(tn+1) = V (tn).

Combining these three equations to eliminate U(tn) gives the system

V (tn+1) = αV (tn) + (1 + α)W (tn+1),

tn+1 = tn + 2V (tn)/g.

Suppose one takes the table velocity as W (t) = −β cos(ωt) with two constants β and ω. Replacing
V (tn) and tn by

vn = 2ωV (tn)/g and φn = ωtn

1Recall: acceleration =
change in velocity
change in time

worksheet1.mws
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leads to the standard form

(1.2.3)
φn+1 = φn + vn,
vn+1 = αvn − γ cos(φn + vn),

where γ = 2ωβ(1 + α)/g. When α = 1, the system preserves area; the map in this case is called the
standard or Chirikov map and it has been studied quite intensively. This system can be simulated for
various values of the parameters α and γ. Note that one can consider φn modulo 2π since it appears
inside a cosine. [See Guckenheimer and Holmes, section 2.4] Worksheet 1
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Figure 1.2.2. The first 610 points on orbits of the bouncing ball map (1.2.3) with
α = γ = 1. Both φ and v are taken mod2π; the left figure depicts a closed curve, while
the right figure depicts two closed curves (apparently).

1.2.5. The Billiard map. Let C ⊂ R
2 be a smooth curve. A particle (‘a billiard‘) moves freely

and frictionally in the region bounded by C at a unit speed. At times tn > 0 the particle collides with
the boundary C and reflects off the boundary. The trajectory of the particle is then describable in
terms of the data at each collision: an arc length φn and an angle of incidence/reflection βn.

φ1

φ2

β1

β2

A
curve C

(a) The billiard map (φ1, β1) 7→ (φ2, β2); φ is the arc-
length from A in a counter-clockwise direction and β is
the counterclockwise angle from the chord to tangent

line.
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(b) The graph of the Gauss map.

Figure 1.2.3.
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1.2.6. The Gauss map. Let u ≥ 0 and let [u] be the greatest integer that is no larger than u
and let {u} = u− [u]. Colloquially, [u] is the integer part of u and {u} is its fractional or decimal part.
Define

(1.2.4) g(x) =

{

{1/x} if x 6= 0,

0 if x = 0,

which is called the Gauss map. The DS xn+1 = g(xn) can be understood from the perspective of

continued fractions. Worksheet 1

1.2.7. Finite-difference schemes. Difference equations arise when finite-difference approxima-
tions of differential equations are made, e.g., in order to solve the differential equations numerically.
Using the (forward) Euler scheme, for instance, the differential equation ẋ = f(x) is approximated by
the difference equation

xn+1 = xn + hf(xn),

with t = nh.

1.3. Orbits, fixed points and periodic orbits

The orbit of a discrete dynamical system is the sequence of its successive iterates (x0,x1,x2, · · · ),
with xn+1 = F(xn). Note that

xn = F(F(· · ·F(x0) · · · )) = Fn(x0),

where Fn is the nth iterate of the map, i.e., the composition of the map with itself n times. The study
of discrete dynamical systems can thus be regarded as the study of multiple composition of functions.

Definition 1.3.1.
A fixed point x∗ of a map satisfies

x∗ = F(x∗).

A periodic point x∗ of period m is a fixed point of Fm.

The orbit of a fixed point x0 = x∗ is the the trivial orbit (x0,x0, · · · ). An orbit (x0,x1,x2, · · · ) is
periodic with period m iff xm = x0; the iterates thus repeat after m iterations, so that the orbit has
the form

(x0,x1, · · · ,xm−1,x0,x1, · · · ,xm−1,x0,x1, · · · ,xm−1,x0,x1, · · · , ).
Clearly, each point on this periodic orbit satisfies Fm(xn) = xn, n = 0, 1, · · · ,m−1; i.e., each point is a
periodic point of period m, too. One says that m is a period of the orbit; the smallest positive period of
an orbit is called its prime period m. The term m-cycle is also employed to designate period-m orbits.

The concepts just defined for discrete DS have the following counterparts for continuous dynamical
systems: A trajectory is a function x(t) satisfying the ODE ẋ = f(x). A fixed point x∗ is a point
satisfying

f(x∗) = 0 ;

fixed points represent equilibrium solutions and are such that if x = x∗ initially then x(t) = x∗, ∀t. A
trajectory is periodic if ∃T > 0 such that x(t+ T ) = x(t).

1.4. Counting periodic points of a map

Let F : X → X be a map and let xn+1 = F(xn) be the natural dynamical system. For m ≥ 1, let
Pm (resp. pm) be the number of periodic points (resp. prime periodic points) of period m.

A periodic point of period m has a unique prime period d ≤ m. Moreover, d must divide m.
Therefore:

(1.4.1) Pm =
∑

d : d|m
pd,

that is to say: the number of periodic orbits of period m is the sum of the number of prime periodic
orbits of period d as d ranges over all divisors of m (including 1 and m itself).

worksheet1.mws
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1.4.1. Objectives. When studying DS, the main interest lies in qualitative features: fixed points,
periodic orbits, stability, etc. The long-time behaviour of the solutions, i.e., the behaviour for large n
or t, is particularly interesting. Our attention is generally on properties that are independent of the
choice of a coordinate system; this leads to idea of equivalence: all DS that can be transformed into
one another by a smooth change of variables are regarded as equivalent.

1.5. Exercises

(i) Prove that if x is a periodic point of period m, then its prime period d divides m. [Hint: use
reductio ad absurdum.]

(ii) Determine the fixed points of the logistic map, equation (1.2.2). Determine its period-2
periodic points. How many prime period-2 points does it have? [The answer depends on µ.]

(iii) Determine the fixed points of the standard map, equation (1.2.3). What about its period-2
periodic points?

(iv) Let C ⊂ R
2 be a closed, convex, smooth curve. Let L be a chord of C whose length is

maximal amongst all chords. Let the two points of C ∩ L have arc lengths {φ0, φ1}. Show
that the billiard map has a period-2 orbit {(φ0, π/2), (φ1, π/2)}.

chord L

curve C

Figure 1.5.4. A period-2 point of a billiard map.

(v) Show that if (φ, β) is a period-2 point of a billiard map, then β = π/2.
(vi) If the curve C is an ellipse, can you find a prime period-4 periodic point? Can you generalise

this construction?
(vii) Determine the fixed points of the Gauss map, equation (1.2.4).
(viii) The map f : S1 → S1 defined by f(z) = z2 has how many periodic points of period n? How

many prime period-n periodic points does it have?
(ix) Apply the Euler scheme to integrate the ODE

(1.5.1) ẋ = 50x(1− x)

with a step size of h. What are the fixed points of (1.5.1)? Does it have any non-trivial
periodic points? What about the Euler scheme?

1.6. Poincaré maps

The finite-differences schemes give a first connection between continuous and discrete DS. A second
is provided by the concept of the Poincaré map (or first return map). The idea behind Poincaré maps
is the conversion of a continuous DS into a discrete one in a space of reduced dimensionality. We
first discuss Poincaré maps for autonomous DS before considering the particular case of systems with
periodic time dependence.

α0

P(α0)

x(t)

Σ
�

-

1.6.1. Autonomous systems. Consider the con-
tinuous system ẋ = f(x) in a state space M of dimension
d and let Σ ⊂ M denote a surface of dimension d − 1.
To construct the Poincaré map the trajectories x(t) that
start on Σ are followed. Let α0 ∈ Σ be a starting point,



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

6

i.e., α0 = x(0), and let α1 be the point where the trajec-
tory x(t), t > 0 crosses Σ for the first time in the same
sense. The Poincaré map P : Σ → Σ is then defined by
α1 = P(α0). The Poincaré map can be employed to gen-
erate the sequence {α0,α1, · · · ,αn, · · · } of the successive

intersections of a trajectory with Σ. By construction, αn = P(αn−1) = Pn(α0). (Note that the
Poincaré map is not always well defined: orbits starting on Σ may not come back to Σ.)

The properties of a Poincaré map reflects the properties of the continuous-time DS from which it
is constructed. In particular:

• Fixed points of P, i.e., points α∗ such that P(α∗) = α
∗ are associated with periodic solutions

with x(t) = x(t+ T ) = α
∗ that cross Σ in a given sense once per period.

• More generally, periodic points of P are associated with periodic solutions for x(t).

Examples

(i) Consider the equation ẍ+2ẋ+2x = 0, which we treat as a 2-dimensional continuous system
by writing y = ẋ in the usual way; i.e.,

(

ẋ
ẏ

)

=

(

y
−2y − 2x

)

.

The ODE has general solution x = e−t(A cos t+B sin t). To define the Poincaré map, take Σ
to be the positive part of the x-axis. Then for α > 0 we consider the solution with x(0) = α,
y = ẋ(0) = 0 :

(

x(t)
y(t)

)

=

(

αe−t ( cos t+ sin t )
−2αe−t sin t

)

;

the next return to the positive x-axis is when x = e−2πα. Hence P (α) = e−2πα.
(ii) For nonlinear systems the Poincaré map can generally only be obtained numerically: the

differential equations are solved numerically and the successive intersections of a trajectory
with Σ are plotted, providing a Poincaré section. A Maple routine constructs Poincaré sections
for particular continuous dynamical systems called Hamiltonian systems. These have an even
number of dynamical variables, x = (pi, qi), i = 1, 2, · · · , d and their governing ODEs are
given by

(1.6.1) ṗi = −∂H

∂qi
, q̇i =

∂H

∂pi
, i = 1, · · · , d,

where H = H(pi, qi) is a (scalar) function. Worksheet 2

1.6.2. Time-periodic systems. A DS of dimension d with explicit time dependence ẋ = f(x, t)
can be regarded as autonomous systems in a state space of dimension d+ 1 by introducing s = t as an
additional dependent variable and writing the differential equations

{

ẋ = f(x, s)
ṡ = 1

For time periodic systems of period T , since f(x, s) = f(x, s + T ) = f(x, s + 2T ) = · · · , we take
s = tmodT . A natural d-dimensional section surface Σ in the extended d+ 1-dimensional state space
is then a slice s = const. At each return on that slice, t has increased by T . Thus the Poincaré map
transforms x(t) into x(t+T ); explicitly we have x(t+T ) = P(x(t)) and in general x(t+nT ) = Pn(x(t)).

Examples

(i) Consider the equation ẍ− x = cos t, which we can write as the continuous system:
(

ẋ
ẏ

)

=

(

y
x+ cos t

)

.

The general solution is x = Aet +Be−t − 1
2 cos t. A calculation shows that the Poincaré map

(i.e., the map P such that P (x(0)) = x(2π) ) is given by

P(α) = Dα+ c

worksheet2.mws
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where the matrixD and vector c are given byD =

(

cosh(2π) sinh(2π)
sinh(2π) cosh(2π)

)

, c = 1
2

(

cosh(2π)− 1
sinh(2π)

)

.

P has a unique fixed point α =

(

−1/2
0

)

corresponding to the periodic solution x =

− 1
2 cos t.

(ii) For nonlinear systems, a numerical solution is necessary to obtain the successive iterates
of the Poincaré map. As an example, one can consider Poincaré sections for the forced
pendulum, with equation ẍ+sin(x) = k sin(ωt), where k and ω are two constant parameters.

Worksheet 2

1.7. Exercises

(i) Verify the claims made in example i of 1.6.1.

(ii) Show that solutions to the hamiltonian ODE for H (equation 1.6.1) preserve H: Ḣ ≡ 0.
(iii) Let H = 1

2 (p
2
1+q21)+

1
6 (p

2
2+q22). Show that Σ = {p1 > 0, p2 > 0, q1 = 0} is a Poincaré section

for the ODE in equation (1.6.1). Find the Poincaré map for this section.
(iv) Write the system in example ii of 1.6.2 as an autonomous DS in three variables (x, v, s), where

v = ẋ and s is time-like. Since one can view s as a variable mod 2π
ω
, show that

Σ = {(x, v, 0) : x, v ∈ R}
is a Poincaré section. Find the fixed points of the Poincaré map.

worksheet2.mws
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CHAPTER 2

Linear autonomous systems

2.1. Discrete systems

Let us adopt the state space M = R
d. Linear autonomous discrete systems are governed by the

equation

(2.1.1) xn+1 = Axn,

where x ∈ R
d and A is a d × d real matrix. Such systems often appear when nonlinear systems are

analysed locally, in the vicinity of a fixed point for example. Note that x = 0 is a fixed point for (2.1.1);
it is unique if 1 is not an eigenvalue of A.

The general solution to (2.1.1) takes the form

xn = Anx0.

The nth power of A is computed efficiently using the Jordan form of A. We suppose here that A has
eigenvalues λi (i = 1, 2, · · · , d) and is diagonalisable, so that

S−1AS = Λ = diag(λ1, λ2, . . . , λd) ≡











λ1

λ2

. . .

λd











,

where S is the matrix of the eigenvectors of A. Then we have

An = S Λn S−1 = S diag(λn
1 , λ

n
2 , . . . , λ

n
d )S

−1.

The use of the matrix S can be regarded as the definition of a variable transformation from xn to
a new vector un, with xn = Sun. Since the columns of S are the (generalised) eigenvectors of A, this
transformation can be interpreted as the use of the eigenvectors as new basis vectors. The evolution of
u is governed by

un+1 = S−1ASun = Λun,

so that

un = Λnu0 with u0 = S−1x0.

The behaviour of the orbits xn in a linear autonomous system is straightforward: this is particularly
clear from the fact that they can be described by an analytical expression. Orbits generally either
converge to or diverge from the origin; this can be analysed using the transformed variable un and
clearly depends on the eigenvalues λi:

• If |λi| < 1, ∀i, then the origin is attracting; i.e., all orbits converge to the origin as n → +∞.
• If |λi| > 1, ∀i, then the origin is repelling; i.e., all orbits diverge from the origin as n → +∞.

An alternative definition states that the origin is attracting for n → −∞, i.e., for backward

orbits.
• If there are eigenvalues both with modulus greater than 1 and less than 1, the origin is a

saddle; most orbits diverge from the origin both forward (n → ∞) and backward (n → −∞)
in time.

When the origin is a saddle, some particular orbits converge to the origin as n → ±∞. It is useful to
find which ones. Consider the case of a diagonalisable matrix A and assume that the origin is hyperbolic,

9
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i.e., that no eigenvalue has modulus equal to 1. Its Jordan form Λ can be written as

Λ =





















µ1

. . .

µr

σ1

. . .

σd−r





















, |µi| < 1, |σi| > 1.

Let us write un =

(

u+
n

u−
n

)

where u+
n ∈ R

r and u−
n ∈ R

d−r. It is clear that orbits with u−
0 = 0

converge to 0 for n → ∞ while those with u+
0 = 0 converge to 0 for n → −∞. These conditions

can be formulated in terms of the original variable xn = Sun by noting that the columns of S are the
eigenvectors of A. Thus, orbits xn converge to 0 forward in time provided that x0 is a linear combination
of the r eigenvectors associated with the eigenvalues µi with modulus less than 1. Similarly, orbits xn

converge to 0 backward in time provided that x0 is a linear combination of the d − r eigenvectors
associated with the eigenvalues σi with modulus greater than 1. Non-zero imaginary parts for the
eigenvalues indicate that the orbits are rotating around the origin. Let us define

Definition 2.1.2.

The stable subspace of a linear discrete-time DS on R
d is the set of x = x0 such that xn → 0

as n → ∞.
The unstable subspace of a linear discrete-time DS on R

d is the set of x = x0 such that xn → 0
as n → −∞.

It is a consequence of the discussion above that one can describe the stable and unstable subspaces
entirely in terms of the spectrum of the linear DS:

Theorem 2.1.

The stable subspace E+ ⊂ R
d as the subspace spanned by the eigenvectors associated with

eigenvalues µi with |µi| < 1.
The unstable subspace E− ⊂ R

d as the subspace spanned by the eigenvectors associated with
eigenvalues σi with |σi| > 1.

The subspaces E+ and E− are sometimes denoted by Es and Eu; they are also called forward
contracting subspace and backward contracting subspace, respectively. The hyperbolicity requirement
ensures that E+ ⊕ E− = R

d. Note that E+ and E− are invariant subspaces; i.e., if x0 ∈ E+ then
xn ∈ E+ ∀n and, similarly, if x0 ∈ E− then xn ∈ E− ∀n (can you prove it?).

Example. Consider the two-dimensional system

xn+1 = Axn =

(

3/2 1
1 0

)

xn,

where xn =

(

xn

yn

)

. The eigenvalues of A are found to be −1/2 and 2, so 0 is a hyperbolic saddle;

corresponding eigenvectors are
(

1
−2

)

and

(

2
1

)

,

respectively. It follows that

S =

(

1 2
−2 1

)

, S−1 =
1

5

(

1 −2
2 1

)

.

Introduce new variables un decomposed in u+
n and u−

n according to

un =

(

u+
n

u−
n

)

= S−1

(

xn

yn

)

=
1

5

(

1 −2
2 1

)(

xn

yn

)

=
1

5

(

xn − 2yn
2xn + yn

)

.
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The stable subspace E+, spanned by

(

1
−2

)

corresponds to u− = 0 and so has equation 2x+ y = 0.

The unstable subspace E−, spanned by

(

2
1

)

, corresponds to u+ = 0 and so has equation x− 2y = 0.

2.2. Classification of fixed points in two dimensions

In two dimensions, the properties of the origin are easily classified. We consider the generic possi-
bilities for which the two eigenvalues λi satisfy |λi| 6= 1. These are:

• |λ1 | > 1 and |λ2 | > 1: the origin is a repelling node;
• |λ1 | < 1 and |λ2 | < 1: the origin is an attracting node;
• |λ1 | < 1 and |λ2 | > 1 (or |λ1 | > 1 and |λ2 | < 1) : the origin is a saddle;
• λ1 = λ2 ∈ C: the origin is a centre, which is repelling if |λ1| > 1 and attracting if |λ1| < 1.

It is sometimes convenient to classify the properties of the origin just described using the trace τ
and determinant ∆ of the matrix A. The eigenvalues are related to them through the characteristic
equation λ2 − τλ+∆ = 0. The regions of the (∆, τ)-plane for which the origin is attracting, repelling,
or a saddle are shown in the following figure 1.

(−1, 0)

•

(1, 2)
•

(1,−2)
•

Repelling
Attracting

Stable

Stable

Repelling

- ∆

6
τ

The distinction between centres and nodes can also be worked out.

2.3. Comparison with continuous systems

The solution of the linear autonomous system ẋ = Ax with x(0) = x0 is written in terms of the
exponential of the matrix A as2

x(t) = eAtx0.

To compute the exponential, one can use the diagonalisation of A, which can again be regarded as a
variable transformation from x to a new vector u, with x = Su. The evolution of u is governed by
u̇ = S−1ASu = Λu, so that u = exp(Λt)u0, with u0 = S−1x0. The behaviour of the origin is then seen
to depend on the real part of the eigenvalues:

• If Reλi < 0, ∀i, then the origin is attracting; i.e., all trajectories converge to the origin as
t → +∞.

• If Reλi > 0, ∀i, then the origin is repelling; i.e., all trajectories diverge from the origin as
t → +∞. An alternative definition states that the origin is attracting for t → −∞, i.e. for
backward trajectories.

• If there are eigenvalues with positive and negative real parts, the origin is a saddle; most
trajectories diverge from the origin both forward (t → ∞) and backward (t → −∞).

In analogy with the definition for discrete systems, we define:

1 See Hand-in Assignment 1, Question 2.

2Recall: The exponential of a n × n matrix Q is defined as eQ =
∞
∑

j=0

1
j!

Qj = I + Q + 1
2
Q2 + · · · . If

Q = diag (α1, α2, . . . , αn) then eQ = diag (eα1 , eα2 , . . . , eαn ). If U = VWV −1 then eU = V eW V −1 where U , V
and W are n× n matrices.
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Definition 2.3.3.

The stable subspace of a linear continuous-time DS on R
d is the set of x = x0 such that x(t) → 0

as t → ∞.
The unstable subspace of a linear continuous-time DS on R

d is the set of x = x0 such that
x(t) → 0 as t → −∞.

One can describe the stable and unstable subspaces entirely in terms of the spectrum of the linear
DS:

Theorem 2.2.

The stable subspace E+ ⊂ R
d is the subspace spanned by the eigenvectors associated with

eigenvalues with negative real parts.
The unstable subspace E− ⊂ R

d is the subspace spanned by the eigenvectors associated with
eigenvalues with positive real parts.

The comparison between the behaviour associated with a single eigenvalue λ in discrete and con-
tinuous systems is summarised by the figure 2.3.1 below.

Attracting

Repelling

Neutral/Indeterminate

Im λ

Re λ

(a) Discrete time

Attracting Repelling

Neutral/Indeterminate

Im λ

Re λ

(b) Continuous time

Figure 2.3.1. Stability in discrete and continuous time.

2.4. Exercises

(i) Consider the continous-time linear DS

(2.4.1) ẋ = Ax, x ∈ R
3.

If the trace of A is zero and the determinant of A is 1, show that the origin is a hyperbolic
saddle.

(ii) Sketch the phase portrait of

(2.4.2) xn+1 = Axn, A =

[

3/2 1
1 0

]

.

(iii) Sketch the phase portrait of the linear system

(2.4.3) xn+1 =





1 3 4
2 1 4
0 0 1

2



 xn.

(iv) Sketch the phase portrait of the linear system

(2.4.4) ẋ =





1 3 4
2 1 4
0 0 1

2



 x.
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CHAPTER 3

Fixed points in nonlinear systems

3.1. Stability

The results of the previous section can be applied to study the dynamics of nonlinear systems in
the vicinity of fixed points of mappings. Consider the nonlinear system xn+1 = F(xn) where x ∈ R

d

and F : Rd → R
d. Of particular interest is the stability of fixed points. A fixed point x∗ = F(x∗) is

stable provided that orbits that start close enough to x∗ stay close to x∗ for all time. Formally,

Definition 3.1.4.
x∗ is stable if ∀ǫ > 0, ∃δ > 0 such that |x0 − x∗| < δ ⇒ |xn − x∗| < ǫ, ∀n > 0.
x∗ is asymptotically stable if there is a neighbourhood U of x∗ such that x0 ∈ U implies that xn → x∗
as n → ∞.

xx∗

ǫ

δ

(a) Definition of Stability

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

(b) An Example of Stability

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5  0  0.5  1

(c) Asymptotic Stability: xn → x∗ as
n → ∞

Figure 3.1.1. (a) Given ǫ > 0, there must be a δ > 0 such that the orbit of any point
x within δ of x∗ is contained within a distance ǫ of x∗. (b-c) Asymptotic stability
implies stability but not vice versa.

To study stability, we consider the system locally, in the vicinity of x∗. We introduce the new vector
variable ηn, with xn = x∗ + ηn, where |ηn| is assumed to be small. We have

xn+1 = x∗ + ηn+1 = F(x∗ + ηn).

Assuming that F is twice continuously differentiable, we expand it as a Taylor series:1

F(x∗ + ηn) = F(x∗) +Aηn +O(|ηn|2)
where A = DF|

x∗

is the matrix of the derivatives of F (i.e., the Jacobian matrix) evaluated at x∗.
Thereby, we see that

(3.1.1) ηn+1 = Aηn +O(|ηn|2), where A = DF|
x∗

.

1A function f(x) = o(x) if f(x)/x → 0 as x → 0. We say that “f is little-o of x.” A function f(x) = O(x2) if

f(x)/x2 < Constant for all x sufficiently small and we say that “f is big-O of x2.” For example x3/2 = o(x) but not
O(x2), while x2 = o(x) and x2 = O(x2). If F is continuously differentiable, then F(x∗ + η) = x∗ + Aη + o(η), but if F

is twice continuously differentiable, then the o(|η|) term is O(|η|2). The following discussion is true for the continuously
differentiable case, but is simplified if F is assumed to be twice-continuously differentiable.

13



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

14

That is, for ηn sufficiently small the behaviour of the nonlinear system approximates to that of the
corresponding linear system when terms of O(|ηn|2) are neglected. We conclude that

• If x∗ is attracting (i.e., if all the eigenvalues of A have a modulus less than 1), then x∗ is a
stable fixed point for the nonlinear system.

• If x∗ is repelling or is a saddle (i.e., there is at least one eigenvalue of A with modulus greater
than 1), then x∗ is an unstable fixed point for the nonlinear system.

Remarks:

• If the eigenvalues of A have a modulus equal to 1, then one cannot conclude about stability
from the linearised system (3.1.1). Higher-order terms in the Taylor series must be taken into
account (see §3.3 below).

• Saddle points are unstable because some (in fact, most) orbits leave any neighbourhood of
the fixed point as n → ∞. However, as in the case for linear systems, not all orbits leave the
fixed point for n → ∞; similarly not all backward orbits leave the fixed point as n → −∞.
The next section deals with the study of such orbits.

Example. Let F : R2 → R
2 be defined by

F (x) =







x2 y − 7 y

4
+

x

4

y2 +
3 y

4
+ x2 − x

2







where x = [x; y]. Since there are no constant terms, x∗,0 = [0; 0] is a fixed point. Some additional cal-
culations show that there is a single additional real fixed point at approximately x∗,1 ∼= [.37449; .05816].
One computes that

DF =







1

4
+ 2x y x2 − 7

4

2x− 1

2

3

4
+ 2 y







whence

DF[0;0] =







1

4
−7

4

−1

2

3

4






DFx∗,1

∼=
[

.29356 −1.60975

.24898 .86631

]

which have eigenvalues

2±
√
15

4
∼= −.46825, 1.4682 .57994± .56461i.

One sees that the origin is a hyperbolic fixed point with both stable and unstable directions, so it is
not a stable fixed point. On the other hand, the eigenvalues at x∗,1 have modulus ∼ 0.80939, so this
fixed point is stable and indeed asymptotically stable.

Exercise 3.1.1.

(i) Let F : R2 → R
2 be defined by

(3.1.2) F(x) =







1

2
x− 3

4
y + xy2

3

4
x− 1

2
y + x2 + y2







where x = [x; y]. Is x∗ = [0; 0] a stable fixed point? Asymptotically stable? Solution. Yes,
to both. The eigenvalues of dFx∗

are ± sqrt−5
4 which have modulus < 1.

(ii) Determine all the real fixed points of the map F. Determine their stability properties.
(iii) Identify the complex numbers with R

2 via z 7→ [x; y] where z = x+ iy. Define the map f by

(3.1.3) f(z) = exp(z).

Find the fixed points of f and determine if they are stable.
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3.2. Stable and unstable manifolds

We consider a (hyperbolic) saddle at 0. (Any fixed point x∗ can be translated to 0 by a change of
coordinates, so there is no loss of generality involved in assuming that the fixed point lies at the origin
of our coordinate system). As in §2.1, A = DF|

0
is assumed to have r eigenvalues µi with |µi| < 1

and d − r eigenvalues σi with |σi| > 1. For simplicity we assume that all the eigenvalues are real and
distinct.

The dynamics in the vicinity of the origin are governed by the equation

xn+1 = Axn +O(|xn|2), where A = DF|
0

obtained by Taylor expansion. Using the variable un = S−1xn, i.e., using the eigenvectors of A as a
basis, the matrix can take its Jordan form. Since 0 is a hyperbolic saddle, we can use the decomposition

un =

(

u+
n

u−
n

)

, where u+
n ∈ R

r is associated with the eigenvalues with absolute values less than 1 and

u−
n ∈ R

d−r is associated with the eigenvalues with absolute values greater than 1. If we write the
diagonal matrix Λ = S−1AS in block diagonal form (see p. 8 of notes)

Λ =

(

µ 0
0 σ

)

,

where µ = diag(µ1, . . . , µr) and λ = diag(λ1, . . . , λd−r), then the equation un+1 = Λun + O(|u2
n|)

becomes

u+
n+1 = µu+

n +O(|un|2),
u−
n+1 = σu−

n +O(|un|2).
For the linearised system, the stable and unstable subspaces E+ and E−, which are defined by

u−
n = 0 and u+

n = 0, respectively, contain the orbits converging to 0 as n → ±∞. How does this change
when the (small) nonlinear terms are taken into account?

The stable manifold theorem asserts the existence of a local stable manifold W+
loc in some neigh-

bourhood of 0 such that orbits starting on W+
loc approach 0 for n → +∞. The local stable manifold

W+
loc is a graph tangent to E+ at 0; i.e., it is given by

u− = g(u+) = O(|u+|2),
where g is a map from E+ to E−. Furthermore, W+

loc is invariant: this means that F(W+
loc) ⊆ W+

loc or,

equivalently, if x0 ∈ W+
loc, then xn ∈ W+

loc for all n ≥ 0.
The global stable manifold W+ is the set of all x0 such that xn → 0 as n → ∞. It is a consequence

of the stable manifold theorem that W+ = ∪n≥0F
−n(W+

loc). The global stable manifold is often a very
complicated object.

Similarly, there exists a local unstable manifold W−
loc in some neighbourhood of 0 such that orbits

starting on W−
loc approach 0 for n → −∞. The unstable manifold W−

loc is a graph tangent to E− at 0,
i.e., it is given by

u+ = h(u−) = O(|u−|2),
where h is a map from E− to E+. The global unstable manifold W− is also invariant.

The local stable and unstable manifolds can be computed perturbatively in the vicinity of 0, by
expanding F and the functions g and h in power series. As an example, consider the two-dimensional
case. The stable manifold is given by u− = g(u+); it is found by expanding g according to

(3.2.1) u− = g(u+) = a2(u
+)2 + a3(u

+)3 + a4(u
+)4 + · · · ,

where a2, a3, a4, . . ., are constant coefficients to be determined. From (3.2.1), u−
n+1 is written as

u−
n+1 = a2(u

+
n+1)

2 + a3(u
+
n+1)

3 + a4(u
+
n+1)

4 + · · · .
The iterates n+1 on each side can be expressed in terms of (u+

n , u
−
n ) using the mapping F; furthermore

u−
n can be eliminated in favour of u+

n using the stable manifold equation (3.2.1). This leads to a
equation between two polynomials of u+

n . Identifying the coefficients of the various powers of u+
n leads

to equations for a2, a3, a4, . . ., and thus to the determination of an approximation of the stable manifold.
Carrying out this calculation by hand to orders beyond the second or third order in u+

n becomes tedious;

it is however relatively straightforward to implement the procedure in Maple. Worksheet 3

worksheet3.mws
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Example. Consider the R
2 system

xn+1 = 2xn − y2n
yn+1 = − 1

2yn + x2
n

}

(a)

which has a fixed point at the origin. Since the fixed point is at the origin, the corresponding linear
system is given by dropping the non-linear terms

(

xn+1

yn+1

)

=

(

2 0
0 − 1

2

)(

xn

yn

)

,

which is already in diagonal form so u− = x and u+ = y. [That is, the stable subspace E+ is given by
the line x = 0 while the unstable subspace E− is given by the line y = 0.] The stable manifold W+ in
the neighbourhood of the origin is given by

x = g(y) = a2y
2 + a3y

3 + · · · . (b)

To compute the coefficients, we exploit the invariance of W+. Assume that (xn, yn) ∈ W+, so xn =
g(yn). On the one hand, since the stable manifold is invariant (xn+1, yn+1) ∈ W+, i.e. xn+1 = g(yn+1).
This yields

xn+1
(b)
= a2y

2
n+1 + a3y

3
n+1 + · · ·

(a)
= a2(−

1

2
yn + x2

n)
2 + a3(−

1

2
yn + x2

n)
3 + · · ·

(b)
= a2

[

−1

2
yn + (a2y

2
n + a3y

3
n + · · · )2

]2

+ a3

[

−1

2
yn + (a2y

2
n + a3y

3
n + · · · )2

]3

+ · · ·

=
1

4
a2y

2
n − 1

8
a3y

3
n + · · · .

On the other hand, invariance of W+ means that xn+1 = 2g(yn)− y2n by (a), so

xn+1 = 2(a2y
2
n + a3y

3
n + · · · )− y2n = (2a2 − 1)y2n + 2a3y

3
n + · · · .

Comparing the coefficients of powers of yn in the previous two lines, we find

1

4
a2 = 2a2 − 1 i.e., a2 =

4

7
,

−1

8
a3 = 2a3 i.e., a3 = 0.

Hence, we find that the stable manifold W+ is approximately given by the parabola x = 4
7y

2 (correct
to third-order).

Similarly, the unstable manifold W− in the neighbourhood of the origin is given by

y = h(x) = b2x
2 + b3x

3 + · · · .
It is left as an exercise for the reader to show that the unstable manifold W− is approximately given
by the parabola y = 2

9x
2 (correct to third-order). Worksheet 3

3.2.1. Why do these calculations work? Let us consider the problem of determining the func-
tion u− = g(u+) whose graph is the stable manifold. We will focus on the two-dimensional case,
where the stable manifold is a real-valued function of one variable. The higher-dimensional case is not
conceptually more difficult, but its does require some additional book-keeping.

To simplify notation, let x = u+ (resp. y = u−) be the coordinate on the stable (resp. unstable)
subspace. Let the dynamical system be xn+1 = F(xn) where x = [x, y] and F is defined by

xn+1 = µxn + a(xn, yn),

yn+1 = σyn + b(xn, yn),

where |µ| < 1, |σ| > 1 and a, b are analytic functions which vanish to second order at the origin. Assume
that the stable manifold W+ is the graph y = g(x). The invariance of the stable manifold means that
if (xn, yn) ∈ W+, then (xn+1, yn+1) ∈ W+. We can compute yn+1 in two ways:

first: xn,xn+1 ∈ W+ implies

yn+1 = g(xn+1) = g(µxn + a(xn, g(xn))), (∗)

worksheet3.mws
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-0.1

-0.05

 0

 0.05

 0.1

 0.15

-0.15 -0.1 -0.05  0  0.05  0.1  0.15

(a) In the small

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

(b) In the large

Figure 3.2.2. A plot of the stable (x = 4
7y

2 + · · · ) and unstable (y = 2
9x

2 + · · · )
manifolds. The arrows indicate the direction that a point is mapped; they should be
tangent to the manifolds.

second: xn ∈ W+ and xn+1 = F(xn) implies

yn+1 = σyn + b(xn, yn) = σg(xn) + b(xn, g(xn)). (∗∗)

From these two equations, we get

g(µx+ a(x, g(x))) = σg(x) + b(x, g(x)) (∗ ∗ ∗)
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for all x in a sufficiently small neighbourhood of x = 0. Let us write each of a, b and g as a Maclaurin
polynomial of degree N , and group the homogeneous bits of each function together, so we can write

g(x) =
N
∑

k=2

gkx
k +O(xN+1), a(x, y) =

N
∑

k=2

ak(x, y) +O(|x, y|N+1),

b(x, y) =

N
∑

k=2

bk(x, y) +O(|x, y|N+1).

The composition of a homogeneous polynomial of degree d with one of degree d′ yields a homogeneous
polynomial of degree dd′. This is an elementary observation, which is used below repeatedly.

Clearly, if (***) is true, then the degree k part of each side must be equal for k = 0, . . . , N .
Conversely, if the degree k part of each side of (***) are equal for k = 0, . . . , N , then the equation
is satisfied up to a remainder of order xN+1. Since a, b and g vanish to second order at 0, the first
non-trivial homogeneous bit of (***) is the degree 2 bit:

g2 · (µx)2 = σg2 · x2 + b2(x, 0) =⇒ g2 · (µ2 − σ) = p2, (∗ ∗ ∗2)
where p2x

2 = b2(x, 0). Equation (***2) has a solution for g2 since |µ|2 < 1, |σ| > 1.
In general, for the degree N bit of (***), we get an equation similar to (***2), namely

gN · (µN − σ) = pN (∗ ∗ ∗N ),

where pN depends on ak, bk for k ≤ N and gk for k ≤ N − 1. If we assume that (***k) has a solution
for gk for k = 2, . . . , N − 1, then it is clear that (***N ) has a solution.

By induction, there is a formal power series for g that formally solves (***). Since a, b are assumed
to be analytic, the stable manifold theorem says that this formal power series actually converges on a
sufficiently small interval around 0.

Exercise 3.2.2.

(i) Let f : R2 → R
2 be the map

[

x
y

]

7→
[

− 1
2x+ xy2

3y + x2

]

.(3.2.2)

Compute the Taylor series expansions for the stable and unstable manifolds of the hyperbolic
fixed point (x, y) = (0, 0) up to degree 3.

(ii) Let g : R2 → R
2 be the map

g(x) =







y2 − 10 y

3
+ 7x

−y2 − 2x y − x2 + 10x− 14 y

3






where x =

[

x
y

]

.(3.2.3)

Compute the Taylor series expansions for the stable and unstable manifolds of the hyperbolic
fixed point (x, y) = (0, 0) up to degree 3.

3.3. The Hartman-Grobman Theorem

Consider the dynamical system

xn+1 = Axn +G(xn) = F(xn), (DS)

where 0 is a hyperbolic fixed point and G vanishes to second order at the origin. When is (DS)
equivalent to the linear system

yn+1 = Ayn, (LDS)

at least on some neighbourhood of the origin? That is, when is there a coordinate transformation
y = Q(x) that transforms (DS) into (LDS)?

Theorem 3.3.
[Hartman-Grobman] If 0 is a hyperbolic fixed point of (DS), then there is a neighourhood U of 0 and
a homeomorphism Q that transforms (DS) into (LDS).

Recall that a homeomorphism is a 1-1, continuous map with a continuous inverse. Unlike the stable
manifold, the homeomorphism may not be as smooth as the original dynamical system.
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Unfortunately, the Hartman-Grobman theorem is not constructive, so actually finding a formula
for Q is not straightforward. However, there is the tried-and-true method of Taylor series, as in the
the stable manifold theorem. Let us try this method. Beforehand, let us note that solving for Q is
equivalent to solving for its inverse, which we will call H. It transpires that it is somewhat easier to
find H, so this is what we will do.

Example. Let our dynamical system xn+1 = F(xn) be defined by

xn+1 =
1

2
xn + xnyn + αx2

nyn,

yn+1 = 2yn + βxny
2
n.

Clearly the origin is a hyperbolic fixed point, so let us try to construct the transformation x = H(y)
that transforms this system into its linear part.

First, let us note that we can solve for H one degree at a time. Let’s solve for the quadratic part:

H(x, y) =

[

x
y

]

+

[

a2,0x
2 + a1,1xy + a0,2y

2

b2,0x
2 + b1,1xy + b0,2y

2

]

+ · · · .

From this, we compute that

F(H(x, y)) =

[

1
2x
2y

]

+

[

1
2a2,0x

2 + ( 12a1,1 + 1)xy + 1
2a0,2y

2

2b2,0x
2 + 2b1,1xy + 2b0,2y

2

]

+ · · · .

H(A(x, y)) =

[

1
2x
2y

]

+

[

1
4a2,0x

2 + a1,1xy + 2a0,2y
2

1
4b2,0x

2 + b1,1xy + 4b0,2y
2

]

+ · · · .

We see that the linear terms are already equal (as they should be), while the quadratic terms are equal
iff

1

2
a1,1 + 1 = a1,1 =⇒ a1,1 = 2,

and all other coefficients are zero. That is,

H(x, y) =

[

x
y

]

+

[

2xy
0

]

+

[

a3,0x
3 + a2,1x

2y + a1,2xy
2 + a0,3y

3

b3,0x
3 + b2,1x

2y + b1,2xy
2 + b0,3y

3

]

+ · · · .

From this, we compute that up to terms of degree four and higher,

F(H(x, y)) =

[

1
2x+ 2xy

2y

]

+

[

1
2a3,0x

3 + ( 12a2,1 + α)x2y + ( 12a1,2 + 2)xy2 + 1
2a0,3y

3

2b3,0x
3 + 2b2,1x

2y + (2b1,2 + β)xy2 + 2b0,3y
3

]

H(A(x, y)) =

[

1
2x
2y

]

+

[

1
8a3,0x

3 + 1
2a2,1x

2y + 2a1,2xy
2 + 8a0,3y

3

1
8b3,0x

3 + 1
2b2,1x

2y + 2b1,2xy
2 + 8b0,3y

3

]

.

These are equal iff

1

2
a2,1 + α =

1

2
a2,1,

1

2
a1,2 + 2 = 2a1,2, 2b1,2 + β = 2b1,2,

and all other coefficients are zero. We see that a1,2 = 4/3 solves the middle equation. However, the
resonant equations have a solution if and only if α = β = 0 – in which case a2,1 and b1,2 can assume

any value! Worksheet 3.3

As a final note, this proves that when α or β is non-zero the homeomorphism H does not have all
third-order derivatives at 0: if it did, then Taylor’s theorem implies there would be a solution to the
equations in degree 3.

3.3.1. An explanation. Let us conceptualize our example. Let Pd be the vector space of formal
power series of maps from R

d to itself, and let Pk,d be the subspace of homogeneous maps of degree k.
For f ∈ Pd, we will write f =

∑

k fk where fk ∈ Pk,d for all k.
Note that finding an invertible map that transforms (DS) into (LDS) is equivalent to finding an

invertible map that transforms (LDS) into (DS). The latter will prove to be ”easier,” so let us do that.
Assume that x = H(y) does this. Then

H(Ay) = F(H(y)) =⇒ Hk(Ay) = [F(H(y))]k.

worksheet3.3.mws
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Now, the degree k bit of F(H(y)) starts with A.Hk(y) plus additional terms that arise from the bits
of F and H in lower degrees. Thus, our equation is of the form

Hk(Ay) = A.Hk(y) +Mk(y), (%)

where Mk is a degree k homogeneous polynomial determined by the lower-degree terms of F and H.
Let us note that Hk is unknown and we would like to solve this equation. We note that it is linear:
indeed, let Lk : Pk,d → Pk,d be the transformation

Lk(h) = h ◦A−A ◦ h.

It is an (easy) exercise to show that Lk is linear and that equation (%) is the equation

Lk(Hk) = Mk,

which has a solution iff Mk lies in the image of Lk. Let us see when this is the case.
Assume that A = diag(λ1, . . . , λd). There is a convenient basis of Pk,d that diagonalizes Lk.

For each vector of natural numbers α = [α1, . . . , αd] and each standard basis vector of R
d, ej , let

fα,j(y) = yα1
1 · · ·yαd

d ej . The collection of fα,j for α1 + · · ·+ αd = k forms a basis of Pk,d. One notes

Lk(fα,j)(y) = (λ1y1)
α1 · · · (λdyd)

αd ej − λjy
α1
1 · · ·yαd

d ej = (λα1
1 · · ·λαd

d − λj)fα,k(y).

Therefore, the basis fα,j diagonalizes Lk. From this we also see that

kerLk = span{fα,j : λα1
1 · · ·λαd

d = λj }, im Lk = span{fα,j : λα1
1 · · ·λαd

d 6= λj }.

Definition 3.3.5.
A resonance of degree k is an α, j such that λα1

1 · · ·λαd

d = λj .

Resonances are obstacles to solving equation (%). They explain why the homeomorphism may not
be smooth. However, most d-tuples of eigenvalues have no resonances, in which case we can solve for H
as a formal power series. If we can solve (%) in degrees 1, . . . , N , then (DS) and (LDS) are equivalent
up to terms of order N + 1.

In the above example, since λ1λ2 = 1, we have λ2
1λ2 = λ1 and λ1λ

2
2 = λ2. Each are degree 3

resonances with α = (2, 1), j = 1 and α = (1, 2), j = 2 respectively. Our discussion above shows that we
could find H(y) to kill off the quadratic part, but that we will not be able to remove those two cubic
terms.

These observations lead us to record the following useful addition to the Hartman-Grobman theo-
rem.

Theorem 3.4.
[Sternberg Linearisation] If 0 is a hyperbolic fixed point of (DS), and the eigenvalues of A are resonance-
free, and F is infinitely differentiable (C∞), then the homeomorphism of the Hartman-Grobman theorem
can be chosen to be C∞ with a C∞ inverse.

Exercise 3.3.3.

(i) Let f : R2 → R
2 be the map defined in equation 3.2.2. Compute, to third order, the Taylor

expansion of a homeomorphism h defined on a neighbourhood of 0 that conjugates f to its
linear part: f ◦ h = h ◦A, A = df0.

(ii) Give an explicit formula for Hk in terms of Mk, by writing the latter in terms of the basis
fα,j .

(iii) Let g : R2 → R
2 be defined by

[

x
y

]

7→
[

x/2 + y2

2y + (x+ 2y2)2/4

]

.(3.3.1)

Is there a homeomorphism that linearises g at the origin and is also differentiable?



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

21

3.4. Eigenvalues with modulus 1

The previous section shows how near hyperbolic fixed points the behaviour of the nonlinear system
is close to that of the linearised system. It is not so in the (non-generic) case where some eigenvalues have
modulus equal to 1. Here we treat the two-dimensional case, when the two eigenvalues of A = DF|

x∗

have modulus 1 and are complex valued. This case is particularly important since the stability of the
fixed point is left undecided by the linear analysis.

Consider the 2-dimensional system xn+1 = F(xn) with a fixed point x∗ at which the linearised
system has the complex pair of eigenvalues λ1 = λ2 = λ with |λ| = 1. The fixed point is then a centre
for the linearised system, but for the nonlinear system the higher-order terms will typically convert it
into either an attracting or repelling focus. Below is described a method for determining which of these
two alternatives occurs; it involves making a series of coordinate changes to reduce the system to a
normal form which is easier to study. To derive this normal form, we make the further assumptions

λ3 6= 1, λ4 6= 1. This means that λ 6= ±1,
−1±

√
−3

2
,±

√
−1.

(i) First, by making a linear change of coordinates, we can arrange that x∗ = 0. We then introduce
the complex-valued variable z = t · x, where t is an eigenvector of AT, the transpose of A, associated
with the eigenvalue λ ; i.e.,

ATt = λt .

Thus, the linearised system xn+1 = Axn may be expressed as zn+1 = λzn (since t · xn+1 = t · (Axn) =
(ATt) · xn = λt · xn) and the general nonlinear system xn+1 = F(xn) = Axn + O(|xn|2) may be
expressed as

(3.4.1) zn+1 = λzn + az2n + bznzn + cz2n +O(|zn|3).

The complex-valued constant coefficients a, b and c in (3.4.1) can be determined through expressing zn
and zn as functions of xn and yn in the Taylor expansion of F.

(ii) The next step is to make another change of variables to eliminate the quadratic terms in our
dynamical system representation. We try

(3.4.2) wn = zn + αz2n + βznzn + γzn
2.

Then we use (3.4.1) to expand wn+1, keeping only terms up to second-order (and noting, for example
that the difference between z2n and w2

n is third order, so z2n can be replaced by w2
n, etc). This gives

wn+1 = λzn + az2n + bzzn + cz2n + αλ2z2n + βλλznzn + γλ
2
z2n +O(|zn|3).(3.4.3)

But from (3.4.2) we have

λzn = λwn −
(

αλz2n + βλznzn + γλz2n
)

which we substitute into (3.4.3) to give

wn+1 = λwn + z2n
(

a+ αλ2 − λα
)

+ znzn
(

b+ βλλ− λβ
)

+ z2n

(

c+ γλ
2 − λγ

)

+O(|zn|3).

Thus, the system reduces to

wn+1 = λwn +O(|wn|3)
provided we take

(3.4.4) α =
a

λ(1− λ)
, β =

b

λ− 1
, γ =

c

λ− λ
2 =

c

λ(1− λ
3
)
.

Provided that λ3 6= 1, these coefficients are all well-defined. Thereby, we write

(3.4.5) wn+1 = λwn + pw3
n + qw2

nwn + rwnw
2
n + sw3

n +O(|wn|4)

where p, q, r, s are complex-valued constants.

(iii) The final stage is to eliminate as many of the third-order terms as possible, by a similar procedure
to that used in (ii). We make the change of variable

(3.4.6) ζn = wn + dw3
n + ew2

nwn + fwnw
2
n + gw3

n
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and try to choose d, e, f, g so as to eliminate the third-order terms. Following the argumentation of (ii),
we combine (3.4.5) with (3.4.6) to give

ζn+1 = λwn + pw3
n + qw2

nwn + rwnw
2
n + sw3

n

+dλ3w3
n + eλ2λw2

nwn + fλλ
2
wnw

2
n + gλ

3
w3

n +O(|wn|4);(3.4.7)

but from (3.4.6) we have

λwn = λζn − λ
(

dw3
n + ew2

nwn + fwnw
2
n + gw3

n

)

which we substitute into (3.4.7) to give

ζn+1 = λζn + w3
n

(

p+ dλ3 − λd
)

+ w2
nwn

(

q + eλ2λ− λe
)

+wnw
2
n

(

r + fλλ
2 − λf

)

+ w3
n

(

s+ gλ
3 − λg

)

+O(|wn|4).
In order to eliminate cubic terms we require

d =
p

λ(1− λ2)
, e =

q

λ(1− λλ)
, f =

r

λ(1− λ
2
)
, g =

s

λ− λ
3 =

s

λ(1− λ
4
)
.

There is a problem with the term in w2
nwn: its elimination requires eλ(1−|λ|2) = q which is problematic

since |λ| = 1. There is a second potential problem in the denominators of d, f, g: if λ4 = 1, then at least
one denominator is zero. So we choose d, f, g according to the three equations above but take e = 0,
provided that λ4 6= 1. Then the system reduces to

ζn+1 = λζn + qζ2nζn +O(|ζ|4)
This is the desired normal form.
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Analysis of the normal form

The behaviour of this normal form is analysed as follows: Multiplying by ζn+1 gives

|ζn+1|2 = |ζn|2 + 2h|ζn|4 +O(|ζn|5),
where

h =
1

2

(

q

λ
+

q

λ

)

= Re
( q

λ

)

.

Clearly |ζn| → 0 for n → +∞ if h < 0 and |ζn| → ∞ if h > 0. Therefore, we conclude that x∗ = 0 is
attracting (stable) provided that h < 0 and repelling (unstable) provided that h > 0.

Determination of h

We next describe how to calculate the quantity h, whose sign determines the nature of the focus at
x∗ = 0. We need the term in z2nzn, so we consider

zn+1 = λzn + az2n + bznzn + cz2n +mz2nzn + · · ·
where the dots denote other cubic terms and O(|zn|4) terms. We have to repeat stage (ii), but keep
track of the z2nzn terms. Repeating the argumentation of (ii), with the variable wn having the form
(3.4.2), we find

wn+1 = λzn + az2n + bzzn + cz2n +mz2nzn + α
(

λ2z2n + 2λbznzn
)

+β
(

λλznzn + aλz2nzn + bλz2nzn
)

+ γ
(

λ
2
z2n + 2cλz2nz

)

+ · · ·

where we have ignored cubic terms other than z2nzn. As in (ii), we eliminate the quadratic terms by
choosing α, β and γ according to (3.4.4). Thereby, we obtain

wn+1 = λwn +

(

m+
(2λ− 1)ab

λ(1− λ)
+

λ|b|2
λ− 1

+
2λ|c|2
λ3 − 1

)

w2
nwn

where again we have ignored cubic terms other than w2
nwn, and terms of order higher than 3. Finally,

we conclude that

h = Re

[

m

λ
+

(2λ− 1)ab

λ2(1− λ)
+

|b|2
λ− 1

+
2|c|2
λ3 − 1

]

.

Example. The dynamical system

xn+1 = yn
yn+1 = −xn + yn + xnyn

has the origin as a fixed point, so the linearized system is obtained by dropping the nonlinear terms.
The resulting matrix

DF|
0
=

(

0 1
−1 1

)

has eigenvalues λ = λ1 = 1+i
√
3

2 = λ2 (note that |λ| = 1 and λ3 = −1). We consider the eigenvector t
satisfying

(

0 1
−1 1

)T

t = λt,

which we calculate to be t =

(

1
2

(

−1 + i
√
3
)

1

)

. Now, let us express the recurrence relation governing

our system in terms of the the complex variable

z = t · x =
1

2

(

−1 + i
√
3
)

x+ y;

i.e.,

zn+1 =
1

2

(

−1 + i
√
3
)

yn + yn − xn + xnyn

=
1

2

(

1 + i
√
3
)

[

1

2

(

−1 + i
√
3
)

xn + yn

]

+ xnyn

=
1

2

(

1 + i
√
3
)

zn + xnyn.
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By considering the combinations zn − zn and zn + zn, we see that

xn =
1

i
√
3
(zn − zn) and yn =

1

2

[

zn + zn +
1

i
√
3
(zn − zn)

]

;

hence,

zn+1 =
1

2

(

1 + i
√
3
)

zn +
1

i2
√
3
(zn − zn)

[

zn + zn +
1

i
√
3
(zn − zn)

]

which may be expressed in the form

zn+1 = λzn + az2n + bznzn + cz2n +mz2nzn

with a = − 1
6 − i

2
√
3
, b = 1

3 , c = − 1
6 + i

2
√
3
and m = 0. Thus, we find that h = − 1

6 and we therefore

conclude that the origin is attracting (stable).

Exercise 3.4.4.

(i) Let g : R2 → R
2 be the map

(3.4.8)

[

x
y

]

7→
[

−2y2 − 6xy + y − 4x2 + 2x
4y2 + 12xy − y + 8x2 − 3x.

]

Show that the dynamical system xn+1 = g(xn) has a fixed point at the origin which is
asymptotically stable and the origin is only stable for the linearised dynamical system.

3.4.1. A deeper analysis. Let our dynamical system (3.4.1) be written as zn+1 = f(zn) where
f(z) = λz + az2 + bzz̄ + cz̄2 + · · · . We want to find a transformation w = q(z) (equation (3.4.2) which
transforms (3.4.1) into the linear equation wn+1 = λwn. As in the discussion of the Hartman-Grobman
theorem, it is more convenient to try to find the inverse h of q. In this case, we want to solve

f(h(z)) = h(λz). (∗)

To solve (*), we tried to solve it in successive degrees. Why could we solve the equation in degree 2, but
we ran into problems in degree 3? The first answer is: the degree 3 part actually contains dynamical
information (stability information). A second answer lies in analyzing the algebraic structure of the
problem. To see this, let Pk be the vector space of degree k homogeneous polynomials in z and z̄ and let
P be the vector space of formal power series in z and z̄. For h ∈ P we write h =

∑

k hk where hk ∈ Pk.
Define a map Lk : Pk → Pk by

Lk(h) = h ◦ λ− λ ◦ h,

where we view λ as a function that acts by scalar multiplication. The degree k part of (*) is an equation
of the form

Lk(hk) = mk,

where mk is a polynomial that depends on f1, . . . , fk and h1, . . . , hk−1.
What does this operator look like? For a+ b = k, let ra,b(z) = za z̄b. One sees that

Lk(ra,b) = (λa−b − λ)ra,b,

since λλ̄ = 1. Since Lk is diagonal in this basis, it is easy to see that:

kerLk = {ra,b : a+ b = k, a− b = 1 mod n}, im Lk = {ra,b : a+ b = k, a− b 6= 1 mod n},

where n is the smallest positive integer such that λn = 1 (if no such n exists, set it equal to 0).
It is straightforward to see that

(i) L2 is invertible, unless λ3 = 1 (a = 0, b = 2 and a− b = 1 mod 3);
(ii) L3 has kernel spanned by z2z̄ (a = 2, b = 1), unless λ4 = 1, when z̄3 is also in the kernel

(a = 0, b = 3 and a− b = 1 mod 4).

As an exercise, can you determine the image and kernel of L4?
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3.5. Stability of periodic orbits

In discrete systems, periodic orbits can be regarded as fixed points of the iterated map. Thus the
stability of a periodic orbit {x1,x2, · · · ,xm} of period m may be determined by the eigenvalues of the
matrix

DFm|
xi

where xi can be any point of the periodic orbit (since they are all fixed points of Fm). The eigenvalues
of the matrix are in fact independent of xi as is found using the chain rule:

DFm|
x1

= D [F(F · · ·F(x))]|
x1

= DF|
Fm−1(x1)

DF|
Fm−2(x1)

· · · DF|
x1

= DF|
xm

DF|
xm−1

· · · DF|
x1

.
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CHAPTER 4

One-dimensional dynamics

4.1. Introduction

We now study in detail the nonlinear dynamics of R1 discrete systems:

xn+1 = F (xn).

The successive iterates xn of the map can be obtained graphically on a staircase diagram, as illustrated
in figure 4.1.1. Worksheet 4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  0.2  0.4  0.6  0.8  1  1.2  1.4

x0

x
1

Figure 4.1.1. Staircase diagram for the mapping xn+1 = 2.8xn cosxn.

Fixed points x∗ are seen immediately as intersections between the graph y = F (x) and y = x.
Their stability depends on the derivative of the map F ′(x∗) evaluated at x∗:

• If |F ′(x∗)| < 1, then x∗ is stable and it can be shown to be attracting in its neighbourhood;
i.e., ∃ǫ > 0 such that all x with |x− x∗| < ǫ have |F k(x)| → x∗ for k → ∞.

• Conversely, if |F ′(x∗)| > 1, then x∗ is unstable and repelling in its neighbourhood.

Periodic points can be determined graphically by considering the iterated map F k(x) = F (F (· · · (F (x)) · · · ).
See Worksheet 4 for examples of the numerical determination of fixed and periodic points using Maple.

4.2. Bifurcation theory

Many dynamical systems depend on a parameter (e.g., µ for the logistic map xn+1 = µxn(1− xn)
), and one is interested in the behaviour of the system for different values of this parameter. When
the parameter value is changed continuously, the qualitative properties of the system (existence and
stability of fixed points, of periodic orbits, etc.) remain the same — except when the parameter passes
through a critical value, in which case the qualitative properties change suddenly and the system is said
to undergo a bifurcation.

We consider some important bifurcations which arise when the number of fixed points or their
stability change.

A highly important result about the bifurcation of fixed points is the following ‘non-bifurcation’
result. We consider the map xn+1 = Fµ(xn) which depends on a parameter µ and suppose that for
µ = µ∗ a fixed point x∗ exists:

Fµ∗(x∗) = x∗.

27
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Then, provided that F ′
µ∗(x∗) 6= 1, it can be shown that for any µ sufficiently close to µ∗ (but not equal

to µ∗), the system has a fixed point, i.e., ∃xµ such that Fµ(xµ) = xµ. To prove this, consider the
function G(x, µ) = Fµ(x)− x. Clearly,

G(x∗, µ∗) = 0 and
∂G

∂x

∣

∣

∣

∣

(x∗, µ∗)

6= 0,

so that, by the implicit function theorem, the equation G(x, µ) = 0 (which determines the fixed points)
has a solution x = xµ for xµ near x∗ and µ near µ∗.

Thus, a fixed point persists in the neighbourhood of x∗ and µ∗ provided F ′
µ∗(x∗) 6= 1. However, a

change in the stability of the fixed point is possible only if |F ′
µ(x)| passes through 1. We consider the

cases for F ′
µ(x) passing through +1 and −1, respectively, in the following 2 sections. Note that, in the

following sections, fixed points will not generally be labelled with the supercript ∗ where it is clear from
the context that the point in question is a fixed point.

4.2.1. Saddle–node bifurcation. We consider the saddle–node bifurcation1 which arises at the
critical point xc for the critical parameter value µc. This type of bifurcation is associated with a change
in the number of fixed points; it corresponds to the passage of F ′

µ(x) through +1.
For µ < µc, the system has no fixed points in the vicinity of xc; for µ > µc, the system has two fixed

points, one of which is unstable (a saddle in general) and the other one is stable (a node). More formally,
the one-parameter family Fµ(x) of one-dimensional mappings undergoes a saddle–node bifurcation at
the parameter value µc if there is an open interval I and an ε > 0 such that:

(i) For µ ∈ (µc − ε, µc), Fµ has no fixed points in the interval I.
(ii) At µ = µc, Fµ has one fixed point in I at xc and F ′

µc
(xc) = 1.

(iii) For µ ∈ (µc, µc + ε), Fµ has two fixed points in I, one attracting and one repelling.

A saddle–node bifurcation also occurs if the direction of the bifurcation is reversed. That is, a saddle–
node bifurcation occurs at the parameter value µc if there is an open interval I and an ε > 0 such
that:

(ir) For µ ∈ (µc, µc + ε), Fµ has no fixed points in the interval I.
(iir) At µ = µc, Fµ has one fixed point in I at xc and F ′

µc
(xc) = 1.

(iiir) For µ ∈ (µc − ε, µc), Fµ has two fixed points in I, one attracting and one repelling.

An example is provided by the system xn+1 = xn + µ− x2
n with µ ∈ (−1, 1). For µ < µc = 0, there are

no fixed points; when µ = µc = 0 there is a fixed point at x = xc = 0; when µ > µc, there are two fixed
points, x =

√
µ which is stable, and x = −√

µ which is unstable (see figure 4.2.2).
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Figure 4.2.2. The saddle-node bifurcation for the map fµ(x) = x+ µ− x2.

In one dimension, one can represent the saddle–node bifurcation in the space (µ, x) as shown in
figure 4.2.3.

1The term saddle–node derives from a description of this bifurcation in higher dimensions.
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(a) Fixed points as a function of µ.
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(b) Cobweb diagram for µ = 0.5.

Figure 4.2.3. The fixed-points in a saddle-node bifurcation.

4.2.2. Flip bifurcation. We next consider the situation which arises when F ′
µ(x) passes through

−1. In this case the fixed point persists, but becomes unstable, and the bifurcation is called a flip

bifurcation (or period-doubling bifurcation). For this bifurcation the change in the stability of the fixed
point is accompanied by the appearance of a period-two orbit. More formally, the one-parameter family
Fµ(x) of one-dimensional mappings undergoes a flip bifurcation at the parameter value µc if there is an
open interval I and an ε > 0 such that:

(i) For each µ ∈ [µc − ε, µc + ε], there is a unique fixed point xµ for Fµ in the interval I.
(ii) For µ ∈ (µc − ε, µc], Fµ has no orbits of period 2 in the interval I and xµ is attracting (resp.

repelling).

(iii) For each µ ∈ (µc, µc + ε), there is a unique period–2 orbit {x(1)
µ , x

(2)
µ } in the interval I with

Fµ(x
(1)
µ ) = x

(2)
µ . This period–2 orbit is attracting (resp. repelling); meanwhile the fixed point

xµ is repelling (resp. attracting).

(iv) As µ → µc, we have x
(1)
µ → xµ and x

(2)
µ → xµ.

Thus, there are two typical cases for a flip bifurcation: (a) as µ increases, a fixed point may change its
nature from attracting to repelling and, at the same time, give birth to an attracting period-2 cycle;
and (b) as µ increases, a fixed point may change its nature from repelling to attracting and, at the same
time, give birth to a repelling period-2 cycle.

As in the saddle–node case, the direction in which the bifurcation occurs may be reversed. That
is, the one-parameter family Fµ(x) of one-dimensional mappings undergoes a flip bifurcation at the
parameter value µc if there is an open interval I and an ε > 0 such that:

(ir) For each µ ∈ [µc − ε, µc + ε], there is a unique fixed point xµ for Fµ in the interval I.
(iir) For µ ∈ (µc, µc + ε), Fµ has no orbits of period 2 in the interval I and xµ is attracting (resp.

repelling).

(iiir) For each µ ∈ (µc − ε, µc], there is a unique period–2 orbit {x(1)
µ , x

(2)
µ } in the interval I with

Fµ(x
(1)
µ ) = x

(2)
µ . This period–2 orbit is attracting (resp. repelling); meanwhile the fixed point

xµ is repelling (resp. attracting).

(ivr) As µ → µc, we have x
(1)
µ → xµ and x

(2)
µ → xµ.

To examine this bifurcation, we consider the one-parameter family Fµ of one-dimensional mappings,
and suppose Fµ has a fixed point xµ depending smoothly on µ. By making a change of coordinates
(depending on µ) we can arrange that xµ = 0. Then we can write

Fµ(x) = ax+ bx2 + cx3 + · · ·

where the coefficients a, b, c depend on µ. We are interested in the change that occurs as a passes
through −1 (since F ′

µc
(0) = a) and so we suppose a = −1 when µ = µc.
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To eliminate the x2 term in Fµ we try the change of variable: yn = xn + αx2
n. We find that

yn+1 = xn+1 + αx2
n+1

= axn + bx2
n + cx3

n + α
(

a2x2
n + 2abx3

n

)

+O(x4
n)

= a

(

xn +
b+ αa2

a
x2
n

)

+ (c+ 2αab)x3
n +O(x4

n)

= ayn + βy3n +O(y4n)

provided we take

α =
b+ αa2

a
, i.e., α =

b

a(1− a)

and

β = c+ 2αab = c+
2b2

1− a
.

Thereby, the system xn+1 = Fµ(xn) is transformed to yn+1 = Gµ(yn) wherein

Gµ(y) = ay + βy3 +O(y4).

For a period-2 orbit we require

y = Gµ(Gµ(y)),

i.e., y = a2y + aβ(1 + a2)y3 +O(y4)

which has the possible solutions y = 0 (corresponding to the fixed point of Fµ) and

(4.2.1) y ≈ ±
√

1− a2

aβ(1 + a2)
.

4.2.3. Supercritical case: β(µc) > 0. In this case β(µ) > 0 for µ near µc. Consider a sufficiently
small δ > 0. Then we have the following scenarios

• If −1− δ < a(µ) < −1 then:
(a) |a(µ)| > 1 so the fixed point of Fµ is repelling;
(b) 2 solutions (4.2.1) exist (y1 and y2, say) and at these points we have:

| d
dy

(

a2y + aβ(1 + a2)y3
)

|y=y1,2
< 1;

i.e., the 2 points y1 and y2 comprise an attracting period-2 orbit.
• If −1 < a(µ) < −1 + δ then:

(a) |a(µ)| < 1 so the fixed point of Fµ is attracting;
(b) no real-valued solutions (4.2.1) exist.

Thus the bifurcation is associated with a change in the attractor (i.e., the set of points attracting
nearby orbits), from a fixed point to a period-2 orbit2. Typical orbits for a > −1 and a < −1 are shown
in figure 4.2.4.

4.2.4. Subcritical case: β(µc) < 0. In this case β(µ) < 0 for µ near µc. Consider a sufficiently
small δ > 0. Then we have the following scenarios

• If −1− δ < a(µ) < −1 then:
(a) |a(µ)| > 1 so the fixed point of Fµ is repelling;
(b) no real-valued solutions (4.2.1) exist.

• If −1 < a(µ) < −1 + δ then:
(a) |a(µ)| < 1 so the fixed point of Fµ is attracting;

2More precisely, an attractor may be defined as a closed set A with the properties:

(i) A is an invariant set : x0 ∈ A ⇒ xn ∈ A ∀n.
(ii) A attracts an open set of initial conditions: ∃ open set U ⊃ A such that if x0 ∈ U then the ‘distance’ from

xn to A tends to zero as n → ∞. The largest such U is called the basin of attraction of A.

(iii) A is minimal : there is no proper subset of A that satisfies conditions (i) and (ii).
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(a) −1 < µ < 0,−1 < a < 0, x = 0 is
stable.
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(b) µ = 0, a = −1, graph of f0 crosses
y = −x tangentially.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

xn

x
n
+

1

stable period-2 orbit

unstable

(c) µ > 0, a < −1, x = 0 is unstable, a
stable period-2 orbit appears.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

xn

x
n
+

1

stable

(d) The orbit quickly converges to x =
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(f) The orbit is repelled from x = 0

and attracted to the period-2 orbit.

Figure 4.2.4. The supercritical flip bifurcation for the map fµ(x) = −(1 + µ)x+ x3.

(b) 2 solutions (4.2.1) exist (y1 and y2, say) and at these points we have:

| d
dy

(

a2y + aβ(1 + a2)y3
)

|y=y1,2
> 1;

i.e., the 2 points y1 and y2 comprise a repelling period-2 orbit.

The nature of the flip bifurcation can also be related to the Schwarzian derivative of the map Fµ,
denoted by Ds{Fµ} and defined by

Ds{Fµ} =
F ′′′
µ

F ′
µ

− 3

2

(

F ′′
µ

F ′
µ

)2

.

It follows from the expansion of Fµ(x) = ax+ bx2 + cx3 + · · · and a(µc) = −1 that

Ds{Fµc
}(0) = −6

[

c(µc) + (b(µc))
2
]

= −6β(µc).

Hence, the flip bifurcation is:

• supercritical if Ds{Fµc
}(0) < 0

• subcritical if Ds{Fµc
}(0) > 0

It is often simpler to determine the nature of a flip bifurcation by calculating the Schwarzian derivative
of Fµ(x) directly rather than by expanding Fµ(x) in power series. The Schwarzian derivative may also
be used in the detailed study of the logistic map (see below) and other similar maps.
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4.3. Logistic map: period-doubling cascade and chaos

So far we have studied systems whose dynamics is relatively simple. Here we show how complicated
dynamics can emerge after a succession of bifurcations. We consider the logistic map

xn+1 = Fµ(xn) = µxn(1− xn)

for µ ∈ (0, 4] (which implies Fµ : [0, 1] → [0, 1]) and study the changes in the dynamics as µ increases
from 0; see figure 4.3.5. Note that the map is non-invertible.

 0
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 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
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x
n
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1

Figure 4.3.5. Cobweb diagram for the logistic map with µ = 4.

The map has two fixed points: x∗
(i) = 0 and x∗

(ii) = (µ − 1)/µ, the latter being in [0,1] for µ ≥ 1

only. The stability of the fixed points depends on F ′
µ(x) = µ(1− 2x) evaluated at the fixed point. It is

found that x∗
(i) is stable for 0 < µ < 1, and x∗

(ii) is stable for 1 < µ < 3. In these ranges of µ, the stable

fixed points are attractors; in fact they are attracting the whole interval [0,1] minus the unstable fixed
point.

For µ = µ1 = 3, we have F ′
µ1
(x∗

(ii)) = −1, thus there is a flip bifurcation. To test whether it is

super- or subcritical using the theory of the previous section, we calculate the Schwarzian derivative of
the map:

Ds{Fµ}(x) = − 6

(1− 2x)2
< 0.

Thus the flip bifurcation is supercritical and when x∗
(ii) becomes unstable for µ > µ1 a stable period-2

orbit appears in the vicinity of x∗
(ii). In fact, this orbit can be found explicitly. It is a fixed point of the

iterated map

F 2
µ(x) = µ2x(1− x)(1− µx(1− x)).

Solving for fixed points we find the four solutions

x = x∗
(i)

x = x∗
(ii)

x = x(iii) =
µ+1+[(µ+1)(µ−3)]1/2

2µ

x = x(iv) =
µ+1−[(µ+1)(µ−3)]1/2

2µ























.

The first two, x∗
(i) and x∗

(ii), are fixed points of Fµ; the other two, x(iii) and x(iv), are such that

F (x(iii)) = x(iv) and thus form the period-2 orbit. As expected, this orbit exists for µ > 3 only.
The stability of this orbit can be studied by computing

d

dx
Fµ(Fµ(x))

∣

∣

∣

∣

x=x(iii)

= F ′
µ(x(iv))F

′
µ(x(iii)) = 4 + 2µ− µ2.
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This is equal to −1 for µ = 1 +
√
6. Thus x(iii), regarded as a fixed point of F 2

µ , becomes unstable

through a flip bifurcation for µ = µ2 = 1 +
√
6 = 3.44949 · · · . It can be verified that it is again a

supercritical bifurcation, so that for µ greater than µ2 a stable period-2 orbits of F 2
µ appears. This

orbit is a period-4 orbit of Fµ (i.e., of the original map), and it is attracting. Thus at µ = µ2, the
period-2 orbit becomes unstable and it is replaced as an attractor by a period-4 orbit; this is the
period-doubling phenomenon.

A detailed study of the sequence of bifurcations of the logistic map can be performed using numerical
simulations. Typical results of simulations are shown in figure 4.3.6; this figure displays as a function
of µ a number of iterates (xN , xN+1, · · · ) obtained from an initial value x0 = 1/2. (The first iterates
(x0, x1, · · · , xN−1) for N = 300, say, are not plotted, so that the plotted iterates can be assumed to

have converged to the set attracting most orbits.) Worksheet 5

Figure 4.3.7 shows a zoom on a smaller range of values of µ revealing that successive period-doubling
bifurcations take place as µ is increased. Further zooms allow one to identify a sequence µn, n = 1, 2, · · ·
such that a stable period-2n orbit exists for µn < µ < µn+1, becomes unstable at µn+1 when a stable
period-2n+1 orbit appears. This is the period-doubling cascade, which exists for a wide class of mappings
including the logistic map. (Note that when a stable period-2n orbit exists, all the orbits with period
2i, i = 1, · · · , n − 1 also exist; however, they are repelling and have thus a secondary importance for
the dynamics.)

Importantly, the sequence µn of period doubling parameters converges to a finite µ∞ = 3.5700 · · · .
Thus the period-doubling cascade occupies only a finite range of µ. The convergence is of the form
µn = µ∞ −Aδ−n, for some constants A, δ, so that

lim
n→∞

µn−1 − µn

µn − µn+1
= δ.

A remarkable observation due to Feigenbaum and Coullet & Tresser is that the constant δ = 4.6692
for a wide range of different mappings Fµ. Thus, the period-doubling cascade and the scaling of the
bifurcation parameters are generic to a wide class of DS and in that sense are universal.

For µ > µ∞, the dynamics become very complicated for most µ. However, for certain ranges of
µ, periodic orbits (e.g., with period 3 or 5) are again attracting; see figure 4.3.8. There is an infinite
number of repelling periodic orbits, and for most initial conditions the orbits behave in an irregular way,
with no discernible long-time patterns. The logistic map for µ > µ∞ is thus an example of a chaotic

system.
Several qualitative features of the transition to chaos3 of the logistic map can be understood theoreti-

cally. These features are in fact common to a range of maps (typically continuous, one-dimensional maps

with a unique maximum or minimum); you can carry out numerical experiments with Worksheet 5

for a variety of maps to confirm this. Here we present three theoretical results which help explain the
behaviour of these maps. Later we will explore further these matters using kneading theory.

Result 1. Firstly, we have:

Theorem 4.3.1. For each µ, there exists at most one attracting periodic orbit for the logistic mapping.

Thus, we find in numerical experiments that the attractor for the logistic map is essentially inde-
pendent of the initial value chosen for the iterations. In fact, the above theorem can be proved for a
wide class of mappings Fµ which have the property that the Schwarzian derivative of Fµ is negative for
all x.

Result 2. Secondly, all period-doubling bifurcations (which we regard as flip bifurcations of the iterated
maps F 2n) are supercritical, and therefore lead to the appearance of stable orbits of periods 2n+1. This
follows from the fact that Ds{Fµ} < 0 and from the following result:

3 No definition of the term chaos is universally accepted as yet. However, a useful working definition is: Chaos is
aperiodic long-term behaviour in a deterministic system which exhibits sensitive dependence on initial conditions.

(i) Aperiodic long-term behaviour means that there are orbits (trajectories) which do not eventually settle down

to periodic orbits (trajectories) or fixed points.
(ii) Deterministic means that the system’s irregular behaviour arises from its intrinsic nonlinearity rather than

from noisy ‘input’ data. All systems we consider in this course are determinisitic.
(iii) Sensistive dependence on initial conditions means that orbits (trajectories) which are initially close together

will ultimately diverge. We discuss this matter in Section 4.4, in terms of Liapunov exponents.

worksheet5.mws
worksheet5.mws
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Figure 4.3.6. Period-doubling bifurcations for the logistic map: x (vertical axis) as
a function of µ (horizontal axis). The stable period 2n periodic orbits are found by
following the orbit xn with x0 = 0.1 for a large number of iterations.

Theorem 4.3.2. If a mapping F satisfies Ds{F} < 0, then the iterated mappings F k for k = 2, 3, 4, . . .
satisfy Ds{F k} < 0.



DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  DRAFT  --  

35

This theorem is a consequence of the property satisfied by the Schwarzian derivative of the compo-
sition of two functions, P (x) and Q(x) say, namely

Ds{P ◦Q}(x) = [Q′(x)]
2
Ds{P} (Q(x)) +Ds{Q}(x)

µ

x
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0.6

0.7

0.8

0.9

3.5 3.52 3.54 3.56 3.58 3.6

Figure 4.3.7. Same as figure 4.3.6 but for a smaller range of values of µ.
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Figure 4.3.8. ‘Chaotic region’ for the logistic map with x0 = 0.1; x (vertical axis) as
a function of µ (horizontal axis). Note the windows of attracting periodic orbits.

(check this as an exercise). It follows that if Ds{P} < 0 and Ds{Q} < 0, then Ds{P ◦ Q} < 0; in
particularDs{F k

µ} < 0 ifDs{Fµ} < 0 It is then clear that all the flip bifurcations of F 2n

µ are supercritical

since Ds{F 2n

µ } < 0.

Result 3. Thirdly, we examine the order of the appearance of periodic orbits for the logistic map.
In fact, there is a natural ordering of the possible periodic orbits which is described by the following
important result:

Theorem 4.3.3 (Sarkovskii’s theorem.). Consider the following ordering of the natural numbers:

3 ⊲ 5 ⊲ 7 ⊲ · · · ⊲ 2 · 3 ⊲ 2 · 5 ⊲ 2 · 7 ⊲ · · · ⊲ 22 · 3 ⊲ 22 · 5 ⊲ 22 · 7 ⊲ · · ·
· · · ⊲ 23 · 3 ⊲ 23 · 5 ⊲ 23 · 7 ⊲ · · · ⊲ 2n ⊲ 2n−1 ⊲ · · · ⊲ 23 ⊲ 22 ⊲ 2 ⊲ 1.

If a continuous map F has a prime period-k orbit, then it has prime period-n orbits for all n ⊳ k.

We remark that there is a converse to Sarkovskii’s theorem: there are maps with period-k orbits
and no period-l orbits for all l ⊲ k. We prove the following corollary to Sarkovskii’s theorem:

Corollary 4.3.1. If a continous map F has a prime period-3 orbit, then it has prime period-n orbits

for all n ∈ N.

Proof. To prove this, we consider the mapping F with period-3 orbit (a, b, c); i.e., we have F (a) =
b, F (b) = c, F (c) = a. We shall assume that a < b < c (the case a < c < b is treated similarly, see figure
4.3.9).

Let us define I0 = [a, b] and I1 = [b, c]. Four observations are used in the proof:

(i) F (I0) ⊇ I1.
(ii) F (I1) ⊇ I0 ∪ I1.
(iii) If I is a closed interval and F (I) ⊇ I, then F has a fixed point in I.
(iv) Suppose I, J are closed intervals. If F (I) ⊇ J , then there exists a closed interval K ⊆ I such

that F (K) = J .

The last two observations can be established using the intermediate value theorem. We start the proof
by noting that (ii) and (iii) imply that F has a fixed point in I1. Also, (i), (ii) and (iii) imply that F 2

has a fixed point in I0, so that F has a period-2 orbit. Thus, the n = 1 and n = 2 cases are proven and
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(c) The two cases: left is (a) above; right is (b) above.

Figure 4.3.9. The two cases of the “prime period-3” implies all prime periods theorem.

henceforth we assume n > 3. Now we construct a nested sequence of closed intervals An: let A0 = I1,
(ii) and (iv) imply that there is a A1 ⊆ A0 with F (A1) = A0 = I1. Similarly, there is a A2 ⊆ A1 with
F (A2) = A1 and so F 2(A2) = A0. Proceeding similarly, the sequence

A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An−2, with F k(Ak) = A0, k = 1, 2, . . . , n− 2,

can be constructed. The next interval in the sequence, An−1 is constructed by noting that Fn−1(An−2) =
F (A0) ⊇ I0 (using (ii)). Then, (iv) implies that there is a An−1 ⊆ An−2 with Fn−1(An−1) = I0. Finally
since Fn(An−1) = F (I0) ⊇ I1 (using (i)), there exists a An ⊆ An−1 with Fn(An) = A0 = I1. Now,
by construction An ⊆ A0, so that Fn(An) ⊇ An. So (iii) then implies that there exists a fixed point
x⋆ ∈ An with Fn(x⋆) = x⋆. This is a prime period-n point unless it is also fixed point of F k for k < n.
But this is impossible since x⋆ ∈ Ak, k = 0, 1, · · · , n gives that F k(x⋆) ∈ I1 for k = 1, 2, . . . , n− 2 and
we also have Fn−1(x⋆) ∈ I0. (The case Fn−1(x⋆) ∈ I0 ∩ I1 = {b} can be excluded since it would imply
n = 3.) This completes the proof. �

A more detailed understanding of the period-doubling cascade and transition to chaos of the logistic
map and analogous maps requires the introduction of the symbolic dynamics and kneading theory. We
start by introducing symbolic dynamics in simpler maps.

4.4. Chaotic systems and symbolic dynamics

Complicated, chaotic behaviour can be found in very simple (nonlinear) systems. In this section,
this is illustrated by three systems. We start by the simplest, the times 2 mod 1 map.

4.4.1. Times 2 mod 1 map. The times 2 mod 1 is the map4

xn+1 = 2xn mod 1;

4‘( mod 1 )’ means we only consider the noninteger part; e.g., 5.43 = 0.43 mod 1.
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thus,

xn+1 = 2xn if 0 ≤ xn < 1/2
xn+1 = 2xn − 1 if 1/2 ≤ xn < 1

}

,

etc (see figure 4.4.10). Note that for any x0, we have x1 ∈ [0, 1) (i.e., [0, 1) is an attractor), so we can
take x0 ∈ [0, 1). The effect of the map is seen to be a stretching of [0, 1) onto [0, 2) followed by a cut.
One can also think of the map as acting on the circle S1, with 2πxn as an angle.

0

0

0.2

0.2

0.4

0.4

0.6
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1

xn
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n
+
1

Figure 4.4.10. The times 2 mod 1 map.

The map has a single fixed point at x∗ = 0, which is unstable. If you perform a numerical integration
of the map, you will realise that the orbits are complicated, at least for initial conditions with a large
number of decimal digits. What is remarkable about the times 2 mod 1 is that its behaviour can be
completely understood analytically. Consider the binary expansion of the initial condition

(4.4.1) x0 = d1/2 + d2/2
2 + d3/2

3 + · · ·

where dj ∈ {0, 1} for j = 1, 2, 3, 4, · · · . The expansion is unique if we exclude sequences with dn = 1 for
all large n. Applying the times 2 mod 1 gives

x1 = 2x0 mod 1

= d2/2 + d3/2
2 + d4/2

3 + · · · ;

i.e., the binary expansion of x1 is obtained from that of x0 by removing the first digit d1 and shifting
all the remaining digits to the left. This procedure allows us to construct all the xn once x0 has been
written as a binary expansion. It is easy then to predict the nature of the orbit associated with a given
x0. If x0 has an expansion ( 4.4.1) of finite length N , then xn = 0, ∀n > N ; this is the case when
x0 = p/2N for some odd p ∈ N (x0 then belongs to the stable manifold of the origin). If x0 is rational
but has an infinite binary expansion, then the expansion is eventually periodic, so the orbit is also
eventually periodic. If x0 is irrational, then the orbit is aperiodic. Because there are irrational numbers
arbitrarily close the rational numbers, the periodic orbits are unstable.
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4.4.2. Sensitive dependence on initial conditions. An important property of chaotic systems
appears clearly in the times 2 mod 1: namely, the sensitive dependence on initial conditions. This
means that orbits with starting points which are close together will ultimately diverge after a sufficient
number of iterations of the map; thus the result after a large number of iterations depends sensitively
on the exact initial condition. This is seen clearly by considering two initial conditions x0 and x′

0. If
they are close, their binary expansions are identical up to the N th term, for a large N , but different
thereafter. After N iterations, the binary expansions of xN and x′

N will differ from the first term, i.e.,
will be completely different. In practice, sensitive dependence on initial conditions means that a system,
although deterministic, is unpredictable, since the initial conditions are never known perfectly. This
has important consequences in many areas of sciences, e.g., in meteorology.

More formally, we may define an invariant set S of a map F : R → R to have sensitive dependence

on initial conditions if ∃r > 0 such that for each x ∈ S and for each ǫ > 0, there is a y ∈ S with
|x− y| < ǫ and a k > 0 with |F k(x)− F k(y)| ≥ r. So, neighbouring orbits, which are arbitrarily close
initially, eventually separate from one another, although each keeps close to the invariant set.

4.4.3. Liapunov exponent. The sensitive dependence on initial conditions is often quantified
using the Liapunov exponent. The Liapunov exponent λ measures the (exponential) rate of divergence
of orbits.

Here is the intuition: Given some initial condition x0, consider a nearby point x0 + δ0, where the
initial separation δ0 is extremely small. Let δn be the separation after n iterates. If |δn| ≈ |δ0| exp(nλ),
then λ is called the Liapunov exponent. A positive Liapunov exponent indicates sensitive dependence
on initial conditions and is a signature of chaos.

A more precise and useful formula for λ is derived as follows: By taking logarithms and noting that
δn = Fn(x0 + δ0)− Fn(x0), we obtain

λ ≈ 1

n
ln

∣

∣

∣

∣

δn
δ0

∣

∣

∣

∣

=
1

n
ln

∣

∣

∣

∣

Fn(x0 + δ0)− Fn(x0)

δ0

∣

∣

∣

∣

=
1

n
ln
∣

∣(Fn)
′
(x0)

∣

∣

where the limit δ0 → 0 has been taken in the last step. Now, the chain rule gives us

(Fn)
′
(x0) =

n−1
∏

i=0

F ′(xi),

thus we may write

λ ≈ 1

n
ln

∣

∣

∣

∣

∣

n−1
∏

i=0

F ′(xi)

∣

∣

∣

∣

∣

=
1

n

n−1
∑

i=0

ln |F ′(xi)| .

If this expression has a limit as n → ∞, then we define that limit to be the Liapunov exponent for the
orbit starting at x0 :

λ = lim
n→∞

{

1

n

n−1
∑

i=0

ln |F ′(xi)|
}

.

Observe that λ depends on x0. However, it is the same for all x0 in the basin of attraction for a given
attractor. For the times 2 mod 1 it can be checked that λ = ln 2. In general, numerical calculation is
required to compute λ.

4.4.4. Transitivity and chaos. A map F acting on set S is said to be transitive if there is an
orbit (x0, x1, x2, · · · ) which is dense in S ; i.e., if the iterates F k(x0) come arbirarily close to any point in
S. Transitivity implies a certain complexity of the dynamics. It is sometimes used to define chaos (see
earlier footnote on definition of chaos): A map may be said to be chaotic if it has sensitive dependence
on initial conditions and it is transitive. An alternative definition is that a map is said to be chaotic if
it has a dense set of periodic points and is transitive. (This can be shown to imply that the map has
sensitive dependence on initial conditions, so that this second definition is stronger than the first.)
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4.4.5. Symbolic dynamics. To capture the essence of the dynamics of a chaotic system, it is
sometimes useful to consider a very simple partition of the phase space and to study how the orbits
wander from one part to the other. More precisely, it is an invariant set S of the state space which
is partioned. To keep track of the location of the orbit in the partition, each component part of the
partition is denoted by a symbol, usually an integer. Thus, one can attribute a symbol to any given
point of S depending on which part of S it belongs to. For example, a useful partition of the invariant
set S = [0, 1) of the times 2 mod 1 is S1∪S2, where S1 = [0, 1/2), S2 = [1/2, 1), and the symbol j = 1, 2
can be attached to points inside Sj .

To a sequence of points constituting an orbit (x0, x1, x2, · · · ), we can associate a sequence of symbols
(j0, j1, j2, · · · ) such that xn ∈ Sjn , n = 0, 1, 2, · · · . More formally, we can define a map h : S → Σ, where
Σ is the space of sequences of symbols ( e.g., Σ = {1, 2}N for the Bernoulli shift map; Σ = {1, 2, · · · , p}N
when there are p different symbols), as follows:

h(x0) = (j0, j1, j2, · · · ), with x0 ∈ Sj0 and Fn(x0) ∈ Sjn (n = 1, 2, 3, · · · ).
The map h is called the itinerary map since it gives, for specified initial conditions, the successive
locations of xn in the partition. By definition, we see

h(x0) = (j0, j1, j2, · · · ) ⇒ h(F (x0)) = (j1, j2, j3, · · · );
that is, the action of F on a sequence of symbols is simply the backward shift of the sequence. Formally,
one writes

h ◦ F = σ ◦ h,
where σ represents the backward shift.

Now, one can get an idea of how complicated the dynamics generated by F are by analysing which
sequences of symbols (or ‘words’) can be realised; i.e., by asking the following question: given a sequence
(j0, j1, j2, · · · ) ∈ Σ, does there exist an initial condition x0 such that h(x0) = (j0, j1, j2, · · · )? If this is
true for all sequences of Σ (i.e., if h is surjective), then the complexity of the dynamics (as reflected by
the symbolic dynamics) is maximum. Often, not all sequences of Σ can be realised, but only the ones
which obey certain rules (i.e., some ‘words’ are forbidden). For example, one can imagine a partition of
S into 3 parts (Σ = {1, 2, 3}N) and a dynamics that does not allow two consecutive symbols to be the
same. If the rules restricting the sequences are known, one can then consider a restricted set Σ′ ⊂ Σ
that contains only the allowed sequences, so that h : S → Σ′ is surjective. The complexity of the
dynamics then depends on whether Σ′ contains sequences that are non-trivial (e.g., periodic repetition
of symbols).

The symbolic dynamics can be simpler than the original dynamics if different initial conditions lead
to the same sequences of symbol. A challenge is thus to find the partition Sj such that h is one-to-one
(and thus a bijection from S to Σ′). When this is possible, one has a very good description of the
dynamics generated by F .

For the times 2 mod 1, the symbolic dynamics are easily constructed. Recall the binary expansion
of initial condition: x0 = d1/2+ d2/2

2 + d3/2
3 + · · · . The first digit in the binary expansion of xn gives

its position in either S1 and S2. Since the first digit in the binary expansion of xn is the nth digit in
the binary expansion of x0, we have

h(x0) = (d1 + 1, d2 + 1, d3 + 1, · · · ).
If we exclude from Σ sequences that end with an infinite number of 2’s, h is bijective: any sequence of
1’s and 2’s corresponds to a unique initial condition x0.

For the times 2 mod 1, the invariant set S is simply the whole interval [0, 1). In the next section
we consider a system which has an invariant set of a different type.

4.4.6. Logistic map with µ > 4. We consider the logistic map

xn+1 = F (xn) = µxn(1− xn)

for µ > 4 and restrict our attention to xn ∈ [0, 1]. Since µx(1 − x) > 1 for x ∈ [a, b] for some
0 < a < b < 1, points in [a, b] leave the interval [0, 1]. On the other hand, points of I1 = [0, a] and
I2 = [b, 1] are mapped into the interval [0, 1] (see figure 4.4.11).

Before introducing the appropriate symbolic dynamics, we need to study the invariant set S for the
map. Clearly, this set consists of the points x for which all the successive iterates Fn(x) are either in
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Figure 4.4.11. Logistic map for µ > 4. The intervals [0, a] and [b, 1] are mapped onto [0, 1].

I1 or in I2. Let

Ij0j1j2···jn = {x : x ∈ Ij0 and F k(x) ∈ Ijk for 1 ≤ k ≤ n},
where jk ∈ {1, 2}. The first step leads to the construction of:

I11 = {x : x ∈ I1 and F (x) ∈ I1}
I12 = {x : x ∈ I1 and F (x) ∈ I2}
I21 = {x : x ∈ I2 and F (x) ∈ I1}
I22 = {x : x ∈ I2 and F (x) ∈ I2}

with I11, I12 ⊂ I1 and I21, I22 ⊂ I2. Each successive stage multiplies the number of intervals by 2. We
can define

Sn = ∪
j0,j1,··· ,jn=1,2

Ij0j1j2···jn ,

which is the set of points remaining in [0, 1] after n iterations. The size of Sn decreases at each step;
i.e, we have Sn ⊂ Sn−1. Then the invariant set is S = ∩∞

n=0Sn. It turns out that this set is a Cantor

set (equivalent to the famous Cantor middle-third set)5. It is on this set that the symbolic dynamics
can be defined.

The symbolic dynamics are defined by associating to any x0 ∈ S the sequence of symbols (j0, j1, j2, · · · )
where jk ∈ {1, 2} and xk = F k(x0) ∈ Ijk . Thus, the sequence of symbols records the passage of the
successive iterates of x0 in I1 or I2. Formally, this means that the function h : S → Σ = {1, 2}N is
defined by

h(x0) = (j0, j1, j2, · · · ),
with

x0 ∈ Ij0
xk = F k(x0) ∈ Ijk
jk ∈ {1, 2}







, (k ∈ N).

5i.e., a fractal set — to be discussed later in Section 6
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Equivalently, h(x0) = (j0, j1, j2, · · · ) may be defined with

x0 ∈ Ij0j1j2···
jk ∈ {1, 2}

}

, (k ∈ N).

Clearly, h ◦ F = σ ◦ h. We now show that h is:

(i) surjective
Consider the sequence of symbols (j0, j1, j2, · · · ) ∈ Σ. We form the sequence of sets Jn =

Ij0j1j2···jn . Observe that J0 ⊃ J1 ⊃ J2 ⊃ · · · ⊃ Jn. Since the Jn form a nested family of closed
intervals, by the Nested Intervals Theorem6, ∃x0 ∈ ∩∞

n=0Jn. Thus, h(x0) = (j0, j1, j2, · · · ).
Hence, h is surjective.

(ii) bijective, under the additional hypothesis |F ′(x)| > 1 in I1 ∪ I2 (i.e., µ > 2 +
√
5)

We prove that h is injective (one-to-one). Firstly, observe that |
(

F k
)′
(x)| > 1 in S, since

(Fn)
′
(x0) =

∏n−1
i=0 F ′(xi) and we have assumed |F ′(x)| > 1 in I1 ∪ I2. Secondly, suppose

there exists x, y ∈ S and h(x) = h(y). This implies that F k(x) and F k(y) are in the same
subinterval of the pair I1, I2. But, from |F ′| ≥ q > 1, we find that

∣

∣

∣

∣

F k+1(y)− F k+1(x)

F k(y)− F k(x)

∣

∣

∣

∣

≥ q

i.e.,
∣

∣F k+1(y)− F k+1(x)
∣

∣ ≥ q
∣

∣F k(y)− F k(x)
∣

∣

≥ q2
∣

∣F k−1(y)− F k−1(x)
∣

∣

≥ q3
∣

∣F k−2(y)− F k−2(x)
∣

∣

...

≥ qk+1|y − x|.
But |F k+1(y)− F k+1(x)| ≤ 1 (since x, y ∈ S). So

|y − x| ≤ 1

qk+1

which implies that x = y. Hence, h is injective and therefore, by (i), h is bijective.

Since there is a bijection between F and σ, the qualitative properties of the logistic map (with
µ > 4) can be derived from those of the shift. In particular, the number of periodic orbits of a given
period can be studied by considering recurrent successions of the symbols 1, 2. For instance, consider
orbits of period 5; they are represented by sequences of symbols which repeat when shifted by 5. There
are 25 = 32 ways to choose such sequences, which are thus fixed points of F 5; two of those correspond
to fixed points (11111 · · · and 22222 · · · ), so that there are 30 points of prime period 5. Each periodic
orbit contains 5 points, hence there are 6 different orbits of period 5.

The fact that the map F has a dense set of periodic points and is transitive (and so is chaotic)
can also be deduced from the fact that these properties hold for the shift σ acting on Σ. To prove
these properties for σ we need to define an appropriate ‘distance’ between elements of Σ. Consider two
sequences of symbols s = (s0, s1, s2, · · · ) ∈ Σ and t = (t0, t1, t2, · · · ) ∈ Σ; the ‘distance’ between them,
d(s, t), is defined by

d (s, t) =

∞
∑

i=0

|si − ti|
3i

.

We show that periodic points are dense by constructing a periodic point t arbitrarily close to any
s = (s0, s1, s2, · · · ). Let t = (s0, s1, · · · , sn, s0, s1, · · · , sn, · · · ). Clearly, t is periodic and d (s, t) < ǫ for
any ǫ > 0 provided that n is large enough.

Transitivity is established by constructing a point t whose iterates σk(t) come arbitrarily close to
any s. Such a t is given by

t = (1, 2; 1, 1, 2, 1, 2, 2; 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2; · · · ),
which lists all possible blocks of one symbol, then (after the ‘;’ used for clarity) all possible blocks of
two symbols. (Verify: for any ǫ > 0 there is a k ≥ 0 such that d

(

σk(t), s
)

< ǫ).

6The Nested Intervals Theorem asserts: “Suppose Bi form a nested sequence of closed nonempty intervals. Then
∩∞

i=0Bi is nonempty.”
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CHAPTER 5

Two-dimensional dynamics

5.1. Introduction

This Chapter considers the global, nonlinear dynamics of two-dimensional systems

xn+1 = F(xn), xn ∈ R
2, i.e.,

(

xn+1

yn+1

)

=

(

f(xn, yn)
g(xn, yn)

)

.

We assume that the map F is invertible. The phenomena that will be illustrated also occur in higher-
dimensional maps.

From §2 recall that the stability of a fixed point x∗ = F(x∗) depends on the eigenvalues of the Jaco-
bian matrix DF|

x∗

. The Jacobian matrix is also useful for points which are not fixed: its determinant
at some xn gives the change in area of a surface element centred on xn when it is mapped by F:

dxn+1dyn+1 = det(DF|
xn

)dxndyn.

It can also be shown that an infinitesimal circle centred on xn is mapped onto an ellipse centred on
xn+1 with semi-axes given by the eigenvalues of (DF|

xn
)T DF|

xn
(times the radius of the circle) and

in the direction of the corresponding eigenvectors.
For an area–preserving map, we have |det(DF)| = 1 everywhere. Such maps are associated with

conservative systems, particularly with the Hamiltonian systems of classical mechanics. Note that
area–preservation is incompatible with the existence of an attractor.

5.2. Stable and unstable manifolds

Saddle points and their stable and unstable manifolds are important for sensitive dependence on
initial conditions and chaos. In two-dimensional systems, in particular, the behaviour of orbits for
n → ∞ can depend crucially on which side of the stable manifold they originate from. Also, the
unstable manifold is generally attracting so that orbits diverge to infinity along the unstable manifold
for n → ∞.

In section §3 we discussed the local nature of the stable and unstable manifolds in a small neighbour-
hood of a saddle point x∗. These are global objects, however: letW

−
loc(x∗) be a local unstable manifold in

some neighbourhood of the saddle x∗, where it is defined by an expansion u+ = a2(u
−)2+a3(u

−)3+ · · · .
Then the unstable manifold can be defined globally as the union of all forward images of W−

loc(x∗):

W−(x∗) = ∪∞
n=0F

n(W−
loc(x∗)).

Similarly, the global stable manifold W+(x∗) can be defined as the union of the backwards images of a
small (local) segment W+

loc(x∗) near the saddle point; i.e.,

W+(x∗) = ∪∞
n=0F

−n(W+
loc(x∗)).

The attracting nature of the unstable manifold for n → ∞, and similarly of the stable manifold for
n → −∞, provides a technique to find numerical approximations to the manifolds. The forward orbits
of a set of points along the unstable subspace very near the saddle approximate the unstable manifold;
and the backward orbits of a set of points along the stable subspace near the saddle approximate the
stable manifold.

Figure 5.2.1 shows approximations to the global stable and unstable manifolds obtained using this
technique for the Hénon map

xn+1 = a− x2
n + byn, yn+1 = xn,

with a = 2.12 and b = −0.3 Worksheet 6 . The complicated shape of the manifolds, which are
convoluted curves, appears in spite of the low resolution.

43

worksheet6.mws
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Figure 5.2.1. Global stable and unstable manifolds for the Hénon map for a = 2.12
and b = −0.3: the saddle point has coordinates x∗ = (0.94, 0.94), W−(x∗) is the mostly
horizontal curve and W+(x∗) is the mostly vertical (and poorly resolved) curve.

The following should be noted and can be proved: the manifold W−(x∗) does not intersect itself
and the manifold W+(x∗) does not intersect itself, but W−(x∗) and W+(x∗) do intersect one another.
When stable and unstable manifolds intersect, they do so at a homoclinic point xh which satisfies

lim
n→∞

Fn(xh) = lim
n→∞

F−n(xh) = x∗.

If the stable and unstable manifolds intersect at a homoclinic point, they must intersect an infinite
number of times since

xh ∈ W+(x∗) ∩W−(x∗) ⇒ Fk(xh) ∈ W+(x∗) ∩W−(x∗), for k = ±1,±2,±3, . . . .

Because Fn(xh) → x∗ for n → ±∞, the stable and unstable manifold have a complicated form, as
illustrated in figure 5.2.2. This is the homoclinic tangle discovered by Poincaré.

Stretching and folding. We remarked in §4 that sensitive dependence on initial conditions is a
central characteristic of chaotic systems. In particular, we observed that neighbouring orbits diverge
exponentially fast from one another (at least initially). How can this be if the orbits remain confined to
a bounded region of phase space? The answer to this question lies in the basic mechanism of repeated
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Figure 5.2.2. Homoclinic tangle of stable and unstable manifolds.

stretching and folding of the phase space. We illustrate this process by an important example: Smale’s

horseshoe map.
In the 1960’s, Smale studied the dynamics of maps with saddles and homoclinic points and showed

that these are (locally) equivalent to the dynamics of the horseshoe map whose construction is given
schematically in figure 5.2.3. The horseshoe map can be described as a two-dimensional version of the
logistic map with µ > 4: like the logistic map, it has a fractal invariant set on which the dynamics is
equivalent to the shift and it is chaotic.

5.3. Bifurcation theory

The theory of bifurcations for one-parameter families of two-dimensional maps Fµ is similar to that
of one-dimensional maps discussed in §4.2. If the map has a fixed point x∗, then the fixed point persists
provided that the eigenvalues λ1 and λ2 of DF|

x∗

are both different from 1.
Suppose, as we continuously vary µ, we find that an eigenvalue becomes equal to 1 at µ = µc.

Then a saddle–node bifurcation may occur, with two fixed points on one side of the bifurcation (e.g., for
µ < µc) which collide for µ = µc and no fixed points on the other side of the bifurcation (for µ > µc).

The stability of the fixed point can change (as we vary µ) if one eigenvalue, λ1 say, becomes such
that |λ1| = 1 for µ = µc. One possibility is that λ1 = −1, in which case the system may undergo a
flip bifurcation similar to that studied for one-dimensional systems, with the destabilisation of the fixed
point associated with the birth of a period-2 orbit.

But |λ1| = 1 can also occur for a complex value of λ1 (with nonzero imaginary part). In this case,
λ1 = λ2 = λ = eiα for some α 6= 0, π, and the bifurcation is the:

Hopf bifurcation ( or Andronov–Hopf bifurcation)
To study this bifurcation we use the normal form derived in §3.3. Under the assumption that λk 6= 1

for k = 1, 2, 3, 4 at µ = µc, the successive variable transformations used in §3.3 can be carried out to
write the two-dimensional system in the form

ζn+1 = λζn + qζ2nζn + · · · .
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Figure 5.2.3. The two transformations defining the Smale horseshoe: the unit square
(i.e., the domain of the transformation) is first stretched by a factor µ in the vertical
direction and contracted by a factor λ in the horizontal direction, then folded to form
a horseshoe. The dynamics of points mapped on the unit square are considered. The
two horizontal bands are mapped onto the two vertical bands.

(Note:

(i) the variable transformations depend on µ, so that q = q(µ);
(ii) in deriving the normal form, we first translated the coordinate system so that the fixed point

x∗ = 0).

Introducing polar coordinates ζn = rne
iθn brings the system into the form1

rn+1 = |λ|(rn + hr3n) + · · · , where h = Re
( q

λ

)

.

For µ ≈ µc (i.e., |λ| ≈ 1), terms of order higher than r3n are neglected. The dynamics of rn are thus
seen to be those of a one-dimensional map with the fixed points

r∗(i) = 0 and r∗(ii) =

√

1− |λ|
h

.

1Substituting ζn = rneiθn into the normal form gives

rn+1e
iθn+1 = eiθn (λrn + qr3n + · · · ),

and taking the modulus of both sides gives

rn+1 =

√

(λrn + qr3n + · · · )(λrn + qr3n + · · · )

=

√

r2n|λ|2 + r4n(λq + λq) + r6n|q|2 + · · ·

= |λ| rn

√

1 + r2n(
q

λ
+

q

λ
) + r4n

|q|2
|λ|2 + · · ·

≈ |λ| rn
[

1 +
1

2

(

r2n(
q

λ
+

q

λ
) + r4n

|q|2
|λ|2

)

]

[

Recall Taylor expansion:
√
1 + x ≈ 1 +

1

2
x for |x| ≪ 1

]

≈ |λ| rn
[

1 +
1

2

(

r2n(
q

λ
+

q

λ
)
)

]

for small rn, |q|.
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The fixed point r∗(ii) only exists for either (a) |λ| ≤ 1 if h > 0 ; or (b) |λ| ≥ 1 if h < 0; i.e., it exists

only on one side of the bifurcation. In the two-dimensional system, this fixed point r∗(ii) corresponds to

orbits that lie on an invariant curve (almost a circle in the complex plane ζ). This heuristic argument
can be made rigorous, leading to the classification of the Hopf bifurcation in two cases:

• Supercritical case: h(µc) < 0
there is an attracting fixed point and no invariant curve for |λ| < 1; and a repelling fixed
point and an (attracting) invariant curve for |λ| > 1.

• Subcritical case: h(µc) > 0
there is an attracting fixed point and a (repelling) invariant curve for |λ| < 1; and a repelling
fixed point and no invariant curve for |λ| > 1.

5.4. Attractors and basins of attraction: the Hénon map

The large n behaviour of orbits can be characterised by their ω-limit set, defined for a point x0 by

ω(x0) = {x : ∀N > 0 and ∀ǫ > 0, ∃n > N such that |Fn(x0)− x| < ǫ}.
Thus, the iterates Fn(x0) of x0 come arbitrarily close to points of ω(x0) for sufficiently large n.

For fixed points x∗, it is clear that ω(x∗) = {x∗}. Furthermore, the points of a periodic orbit make
up their own ω-limit set. However, in general, points do not belong to their ω-limit set: an attracting
fixed point, for example, constitutes the ω-limit set of all points which are attracted by it. ω-limit sets
are important when they attract a large number of orbits. This motivates the definition of attractors
as ω-limit sets attracting a set of initial conditions with non-zero measure (i.e., for the two-dimensional
case, a set of initial conditions with non-zero area). Attracting fixed points and periodic orbits are
attractors already encountered in one-dimensional systems. There are also chaotic attractors, defined
as attractors containing a dense chaotic orbit; for example, the logistic map has a chaotic attractor for
most µ with µ∞ < µ < 4. Chaotic attractors are also known as strange attractors. (NB: The invariant
set that exists for the logistic map with µ > 4 is not an attractor. This is because the invariant set has
zero measure in the sense that it can be covered by intervals whose total length is arbitrarily small).

For two-dimensional systems, the structure of attractors can be richer. For example, the Hénon
map

xn+1 = a− x2
n + byn, yn+1 = xn,

with b = −0.3 undergoes a period-doubling cascade and transition to chaos as a increases (see Worksheet 6 ).
Thereby, it possesses fixed and periodic points as attractors as well as chaotic attractors made up of
curves or fractal sets. Fractal sets — which will be discussed in §6 — are typically characterised as
possessing a degree of self-similarity ; i.e., if we magnify a tiny part of a fractal, we observe features
reminiscent of the whole. Sometimes the similarity is exact (e.g., Cantor sets), but more often it is only
approximate or statistical. The fractal attractor (which is a chaotic attractor or strange atractor) of
the Hénon map with a = 1.4 and b = 0.3 is illustrated in figure 5.4.4. The right panel shows a zoom
on a part of the attractor and hints at the self-similar structure; further zooms would demonstrate this
more convincingly.

The set of initial conditions which is attracted to a given attractor is called its basin of attraction.
Basins of attractions can have complicated structures even when the attractors themselves are simple.
As an example, figure 5.4.5 shows (in black) an approximation of the basin of attraction of infinity (i.e.,
{x : Fn(x) → ∞ for n → ∞}) for the Hénon map with a = 1.39 and b = 0.3. In this case, orbits
which do not tend to infinity are attracted to a period-2 orbits. The boundary between the two basins
of attractions is, in fact, a fractal. Basins of attraction with extremely complicated structures can be
found.

worksheet6.mws
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Figure 5.4.4. Attractor of the Hénon map with a = 1.4 and b = 0.3. The right panel
shows a zoom which suggests the fractal structure of the attractor.
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Figure 5.4.5. Basin of attraction of infinity for the Hénon map with a = 1.39 and
b = 0.3 (in black).
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CHAPTER 6

Fractals and their dimensions

Recall the invariant set for the logistic map with µ > 4 which we encountered in §4.4.3. This Cantor
set is an example of a fractal set.1

Cantor’s middle-third set
The middle-third set S is defined recursively as follows (see figure 6.0.1). Starting with the unit

interval S0 = [0, 1], we construct a sequence of sets Sn by removing from each segment of Sn−1 its
middle third. Thus,

S0 = [0, 1],

S1 = [0, 1/3] ∪ [2/3, 1],

S2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1],

etc, and

S =

∞
⋂

n=0

Sn.

0
1

2

3

0 1

1/3 2/3

Figure 6.0.1. Construction of Cantor’s middle-third set: S0, S1 S2 and S3 are shown.

Note the following:

(i) Sn contains 2n segments, each of of length 3−n.
(ii) The set S contains an uncountable number of points.
(iii) The set S has zero ‘length’ in the sense that it can be covered by intervals whose total length

is arbitrarily small. (This follows from (i)).
(iv) The set S is nowhere dense.
(v) S can also be defined using the ternary representation:

S = {x ∈ [0, 1] : x = d1/3 + d2/3
2 + d3/3

3 · · · with di = 0 or 2 ∀i}.
Fractal sets appear often in dynamical systems, particularly as attractors for chaotic systems. For

example, the attractor for some Hénon maps and the butterfly–shaped attractor of the Lorenz equations
are both fractals. Basins of attractions can also be fractals. In this section we introduce the notion of
fractals and their dimensions, informally.

We are familiar with the notion that geometrical objects are attributed a topological dimension d,
which is an integer for standard objects. For example, for points d = 0, for curves d = 1, for surfaces

1The invariant set for the Smale horsehoe map is also a fractal set.
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d = 2, for volumes d = 3, etc. The topological dimension d specifies the minimum number of coordinates
necessary to locate a point on each of these objects. E.g., a smooth curve is one–dimensional because
every point on it is determined by one number, namely the arc length from some fixed reference point
on the curve.

Fractals are objects for which this correspondence does not hold; a dimension which (roughly)
indicates the number of coordinates required can be defined, but it is not an integer. For example,
consider von Koch’s snowflake. This fractal is constructed recursively: starting with an equilateral
triangle T0, the middle-third of each segment is replaced by two segments of equal length forming an
equilateral triangle with the replaced middle-third segment. The fractal T is obtained by repeating this
operation an infinite number of times; i.e.,

T = lim
i→∞

Ti ,

as indicated in figure 6.0.2.

0 1 2

Figure 6.0.2. von Koch’s snowflake: T0, T1 and T2 .

Since the von Koch snowflake is a (closed) curve, one might be tempted to think that it is one–
dimensional. However, the von Koch snowflake has an infinite arc length. Furthermore, the arc length
between any two points on the von Koch snowflake is infinite. (Exercise: convince yourself that this
is true!). Hence, points on the snowflake cannot be determined by their arc length from a particular
reference point, because every point is infinitely far from every other. Intuitively, we might guess that
the von Koch snowflake is more than one–dimensional but less than two–dimensional.

Box dimension
The topological dimension d of Cantor’s middle-third set is 0, since it is a collection of points.

However, more useful concepts of dimensions can be introduced for fractals. Here we consider the box

dimension.
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Figure 6.0.3. Box dimension: N(ǫ) is the number of boxes of size ǫ necessary to cover
an object.

Consider a curve of finite length l and cover it by boxes (or hypercubes) of size ǫ. For ǫ small, the
minimum number of boxes required for such a covering is N(ǫ) ∼ lǫ−1. Simarly, the minimum number
of boxes required to cover a surface of area A is N(ǫ) ∼ Aǫ−2. In general, for simple (i.e., non-fractal)
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objects of topological dimension d, we have N(ǫ) ∼ α ǫ−d, where α is a constant. See figure 6.0.3. For
fractal objects, the same form of relation holds, but with an exponent different from d; i.e.,

N(ǫ) ∼ α ǫ−D

for some D. This leads to the definition of the box dimension:

D = − lim
ǫ→0+

lnN(ǫ)

ln ǫ
.

Examples

Cantor’s middle-third set. S is covered entirely by the set Sn obtained after n iterations. This
set consists of 2n segments, each of length 3−n. Thus, taking ǫ = 3−n and N(ǫ) = 2n, we find
that D = ln 2/ ln 3 = 0.6309.

von Koch’s snowflake. The box dimension is derived by noting that at stage n, there are 3× 4n

segments, each of length 3−n. Taking ǫ = 3−n and N(ǫ) = 3 × 4n gives a box dimension
D = ln 4/ ln 3 = 1.2619 (which is consistent with our earlier intuitive guess).

Hénon map. The attractor of the Hénon map for certain a and b is a fractal whose box dimension
can be computed numerically. A dimension 1 < D < 2 is found, with the precise value
depending on the parameters.

Remarks:

• The same box dimension D is obtained if the boxes of size ǫ are taken on a fixed grid, as in
figure 6.0.3, or if they are placed freely to minimize their number. The same dimension is
also obtained if (hyper)spheres of diameter ǫ are employed.

• An alternative definition of D considers the limit

lim
ǫ→0+

N(ǫ)ǫp

for different values of p. D is then characterized by the fact that this limit is ∞ for 0 < p < D
and 0 for p > D.

• A similar characterisation is used to define the Hausdorff dimension DH . For this dimension,
one covers the object with sets which are not necessarily cubes but can take any shape.
Starting with

H(ǫ, p) = inf
∑

i

|Ui|p,

where the sets Ui, with diameters |Ui| < ǫ, cover the object and the infimum is taken over all
possible covers Ui, the Hausdorff dimension is DH if

lim
ǫ→0+

H(ǫ, p) =

{

∞ for 0 ≤ p < DH

0 for p > DH
.

In general DH ≤ D, but frequently DH = D.
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