Please hand in answers no later than Friday 26th November.
(Question 1) Let $f:[0,1] \rightarrow[0,1]$ have the graph below. Prove that, for every $n \geq 1, f$ has a prime period- n periodic orbit.

Figure .0.1: A map of $[0,1]$ with prime periodic points of all orders.
(Question 2) Consider the \mathbb{R}^{2} map represented as

$$
\begin{equation*}
\mathbf{x}_{n+1}=\mathbf{F}\left(\mathbf{x}_{n}\right) \tag{0.1}
\end{equation*}
$$

where

$$
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right], \quad \mathbf{F}(\mathbf{x})=\left[\begin{array}{c}
y+\nu \\
y^{2}-x^{2}
\end{array}\right],
$$

and ν is a real-valued parameter.
(a) Find the fixed points of (0.1) in terms of ν.
(b) The map (0.1) undergoes a Hopf bifurcation when the eigenvalues of the Jacobian matrix of derivatives of \mathbf{F} are $\exp (\pm i \sigma)$, where $\sigma \in(0, \pi)$. Find the value of ν, and the corresponding fixed point, at which the map undergoes a Hopf bifurcation.

