Please hand in answers no later than Friday 5th November.
(Question 1) Find the fixed points of the dynamical system $\mathbf{x}_{n+1}=\mathbf{F}\left(\mathbf{x}_{n}\right)$ where

$$
\mathbf{x}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \text { and } \quad \mathbf{F}(\mathbf{x})=\left(\begin{array}{c}
x^{2} \cos \pi y \\
y^{3} \\
x z^{2}+y
\end{array}\right)
$$

and determine their stability
(Question 2) Consider the relation

$$
\begin{equation*}
x_{n+1}=x_{n}-x_{n-1}+2\left(2 x_{n-1}-x_{n}\right)^{3}, \tag{0.1}
\end{equation*}
$$

where $x_{n} \in \mathbb{R}$.
(a) Introduce $y_{n}=x_{n-1}$ and write this relation as a dynamical system $\mathbf{x}_{n+1}=\mathbf{f}\left(\mathbf{x}_{n}\right)$ where \mathbf{f} is a map from \mathbb{R}^{2} to itself.
(b) Find the fixed points of \mathbf{f}.
(c) Can the corresponding linearized map determine the stability of the fixed points?
(d) Let $z_{n}=x_{n-1}+\epsilon x_{n}$ for some $\epsilon \in \mathbb{C}$. Show that, by choosing ϵ appropriately, the system (0.1) may expressed as

$$
z_{n+1}=\alpha z_{n}+\beta_{1} z_{n}^{3}+\beta_{2} z_{n}^{2} \bar{z}_{n}+\beta_{3} z_{n} \bar{z}_{n}^{2}+\beta_{4} \bar{z}_{n}^{3}
$$

and calculate the complex-valued constants $\alpha, \beta_{1}, \beta_{2}, \beta_{3}$ and β_{4}.
(e) Explain briefly (without performing any calculations) how the system may rewritten in terms of a new variable ζ_{n} as

$$
\zeta_{n+1}=\alpha \zeta_{n}+b \zeta_{n}^{2} \bar{\zeta}_{n}+O\left(\left|\zeta_{n}\right|^{4}\right)
$$

Determine b. [NB: it is not necessary to replicate the calculations in the notes. You may use the results.]
(f) Using (iv), show how the stability of the origin depends on b / ϵ and thereby comment upon the stability of the origin for the system (0.1).

