
Dynamical Systems (MATH11027) Assignment 1 1

Please hand in answers no later than Tuesday 19 October.

(Question 1) Consider the linear two-dimensional system

xn+1 = −xn + 3yn
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where xn, yn ∈ R.

(a) Show that there is a saddle-point at the origin.

(b) Find the equations of the stable and unstable subspaces at the origin.

(Question 2) Consider the nonlinear two-dimensional system
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where xn, yn ∈ R.

(a) Show that there is a saddle-point at the origin.

(b) Find the equations of the stable and unstable subspaces at the origin.

(c) Introduce the vector
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which is defined via
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are vectors aligned with the stable and unstable

subspaces, respectively. Thereby, show that the nonlinear system may be
expressed in the form

u+

n+1 = αu+
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and evaluate the constants a, b, α, β and γ.

(d) Show that

i. the stable manifold is given exactly by

u− = δ
(

u+
)3

;

ii. the unstable manifold is given exactly by

u+ = ρ ;
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and evaluate the constants δ and ρ.

(e) Sketch the stable and unstable manifolds in the (u+, u−) plane. Include in
your sketch a few representative orbits and identify the stable and unstable
subspaces.

(f) Show that the nonlinear system reduces to a linear system by the variable
change

pn = u+

n
,

qn = δ
(
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n

)3
− u−

n
.

(Question 3) Let I = [0, 1] and let T : I → I be the tent map defined by

T (x) =

{

2x if x ∈ [0, 1
2
]

−2(x− 1) if x ∈ (1
2
, 1].

Prove that T has exactly 2n periodic points of period n. Compute the number of
prime periodic points of period n for n = 6.


