Please hand in answers no later than Tuesday 19 October.
(Question 1) Consider the linear two-dimensional system

$$
\left.\begin{array}{l}
x_{n+1}=-x_{n}+3 y_{n} \tag{*}\\
y_{n+1}=-\frac{3}{2} x_{n}+\frac{7}{2} y_{n}
\end{array}\right\}
$$

where $x_{n}, y_{n} \in \mathbb{R}$.
(a) Show that there is a saddle-point at the origin.
(b) Find the equations of the stable and unstable subspaces at the origin.
(Question 2) Consider the nonlinear two-dimensional system

$$
\left.\begin{array}{l}
x_{n+1}=-x_{n}+3 y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3} \tag{**}\\
y_{n+1}=-\frac{3}{2} x_{n}+\frac{7}{2} y_{n}-\frac{15}{8}\left(x_{n}-y_{n}\right)^{3}
\end{array}\right\}
$$

where $x_{n}, y_{n} \in \mathbb{R}$.
(a) Show that there is a saddle-point at the origin.
(b) Find the equations of the stable and unstable subspaces at the origin.
(c) Introduce the vector $\binom{u_{n}^{+}}{u_{n}^{-}}$which is defined via

$$
\binom{x_{n}}{y_{n}}=\left(\begin{array}{ll}
a & 1 \\
1 & b
\end{array}\right)\binom{u_{n}^{+}}{u_{n}^{-}}
$$

where $\binom{a}{1}$ and $\binom{1}{b}$ are vectors aligned with the stable and unstable subspaces, respectively. Thereby, show that the nonlinear system may be expressed in the form

$$
\left.\begin{array}{l}
u_{n+1}^{+}=\alpha u_{n}^{+} \\
u_{n+1}^{-}=\beta u_{n}^{-}+\gamma\left(u_{n}^{+}\right)^{3}
\end{array}\right\}
$$

and evaluate the constants a, b, α, β and γ.
(d) Show that
i. the stable manifold is given exactly by

$$
u^{-}=\delta\left(u^{+}\right)^{3}
$$

ii. the unstable manifold is given exactly by

$$
u^{+}=\rho ;
$$

and evaluate the constants δ and ρ.
(e) Sketch the stable and unstable manifolds in the $\left(u^{+}, u^{-}\right)$plane. Include in your sketch a few representative orbits and identify the stable and unstable subspaces.
(f) Show that the nonlinear system reduces to a linear system by the variable change

$$
\begin{aligned}
p_{n} & =u_{n}^{+} \\
q_{n} & =\delta\left(u_{n}^{+}\right)^{3}-u_{n}^{-}
\end{aligned}
$$

(Question 3) Let $I=[0,1]$ and let $T: I \rightarrow I$ be the tent map defined by

$$
T(x)= \begin{cases}2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\ -2(x-1) & \text { if } x \in\left(\frac{1}{2}, 1\right]\end{cases}
$$

Prove that T has exactly 2^{n} periodic points of period n. Compute the number of prime periodic points of period n for $n=6$.

