Topics in Geometric Mechanics: Week 7

$ %% not provided in align* environment \def\newsavebox#1{} \def\intertext#1{\text{#1}} \def\let#1#2{} \def\makeatletter{} \def\makeatother{} \newenvironment{theorem}{\textbf{Theorem.}\rm}{} %%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: %% sets \def\R{\mathbf{R}} \def\Z{\mathbf{Z}} \def\C{\mathbf{C}} \def\Q{\mathbf{Q}} \def\sphere#1{\mathbf{S}^{#1}} \def\rp#1{\R P^{#1}} \def\set#1{\left\{ #1 \right\}} \def\st{\,\mathrm{s.t.}\,} \def\extalg#1#2{\Lambda^{#1}(#2)} \def\symalg#1#2{\mathsf{S}^{#1}(#2)} \def\tenalg#1#2{\mathsf{T}^{#1}(#2)} \def\hom#1#2{\mathrm{Hom}(#1;#2)} \def\extproduct{\wedge} \def\symmetricproduct{\cdot} \def\tensorproduct{\otimes} \def\image#1{\mathrm{Im}\,#1} \def\kernel#1{\mathrm{Ker}\,#1} \def\Trace[#1]#2{\mathrm{Tr}\ifx#1\empty\else{}_{#1}\fi\ifx#2\empty\else\,(#2)\fi} \def\orbit#1#2{{#1}\cdot{#2}} \def\stab#1#2{\mathrm{stab}_{#1}(#2)} \def\Span{\mathrm{span}} %% Lie groups \def\GL#1{\mathrm{GL}(#1)} \def\SL#1{\mathrm{SL}(#1)} \def\Symp#1{\mathrm{Sp}(#1)} \def\Orth#1{\mathrm{O}(#1)} \def\SOrth#1{\mathrm{SO}(#1)} \def\Unitary#1{\mathrm{U}(#1)} \def\SUnitary#1{\mathrm{SU}(#1)} \def\Torus#1{\mathbf{T}^{#1}} \def\H#1{\mathbf{H}^{#1}} \def\Diagonal#1{\mathbf{Diag}(#1)} \def\diag#1{\mathbf{diag}\left(#1\right)} \def\Liegp#1{\mathrm{#1}} %% Lie algebras \def\Mat#1#2{\mathrm{Mat}_{{#1} \times {#1}}(#2)} \def\Matrect#1#2#3{\mathrm{Mat}_{{#1} \times {#2}}(#3)} \def\gl#1{\mathfrak{gl}(#1)} \def\spl#1{\mathfrak{sl}(#1)} \def\symp#1{\mathfrak{sp}(#1)} \def\orth#1{\mathfrak{o}(#1)} \def\sorth#1{\mathfrak{so}(#1)} \def\unitary#1{\mathfrak{u}(#1)} \def\sunitary#1{\mathfrak{su}(#1)} \def\torus#1{\mathfrak{t}^{#1}} \def\liealg#1{\mathfrak{#1}} \def\liebracket#1#2{[#1,#2]} \def\Ad#1#2{\mathrm{Ad}_{#1}{#2}} \def\ad#1#2{\mathrm{ad}_{#1}{#2}} \def\coAd#1#2{\mathrm{Ad}^*_{#1}{#2}} \def\coad#1#2{\mathrm{ad}^*_{#1}{#2}]} %% operators \def\D#1{\,\mathrm{d}{#1}\,} \def\Dat#1#2{\,\mathrm{d}_{#1}{#2}\,} \def\lieder#1#2{{\sf{L}}_{#1}{#2}} \def\covder#1#2{\,\frac{D #2}{d{#1}}} \def\liebracket#1#2{\left[#1,#2\right]} \def\crossproduct{{\boldsymbol{\times}}} \def\ip#1#2{\langle #1, #2 \rangle} \def\norm#1{|#1|} \def\lt{<} \def\gt{>} \def\ddt#1#2{\frac{d{#2}}{d{#1}}} \def\wint#1#2{\int\limits_{#1}^{#2}} \def\didi#1#2{\frac{\partial{#1}}{\partial{#2}}} \def\eulerlagrange#1#2#3#4{\ddt{#1}{}\didi{#4}{#3} - \didi{#4}{#2}} %% labels, etc. \def\labelenumi{{\bf\Alph{enumi}.}} \def\solutioncolor{blue} \def\solutiontopsep{3mm} \def\solutionbotsep{0mm} \newenvironment{solution}{\vspace{\solutiontopsep}\noindent\textbf{Solution}. \textcolor{\solutioncolor}\bgroup}{\egroup\vspace{\solutionbotsep}} %% redo quote environment \def\quote{} \def\endquote{} %% redo enumerate environment \makeatletter \let\oldenumerate\enumerate \let\oldendenumerate\endenumerate \def\enumerate{\bgroup\oldenumerate\setlength{\itemsep}{3mm}\setlength{\topsep}{3mm}} \def\endenumerate{\oldendenumerate\egroup} \makeatother \def\museincludegraphicsoptions{% width=0.25\textwidth% } \def\museincludegraphics{% \begingroup \catcode`\|=0 \catcode`\\=12 \catcode`\#=12 \expandafter\includegraphics\expandafter[\museincludegraphicsoptions] } \def\musefigurewidth{!} \def\musefigureheight{!} \newsavebox{\mypicboc}% \def\includefigure#1#2#3#4{% \edef\fileending{#4}% \def\svgend{svg}% \def\pdftend{pdf_t}% \def\pdftexend{pdf_tex}% \def\bang{!}% \begin{lrbox}{\mypicboc}% \ifx\fileending\pdftend% \input{#3.#4}% \else% \ifx\fileending\pdftexend \input{#3.#4}% \else% \ifx\fileending\svgend% \input{#3.#4}% \fi\fi% \includegraphics{#3.#4}% \fi% \end{lrbox}% \edef\thiswidth{#1}\edef\thisheight{#2}% \ifx\thiswidth\bang% \ifx\thisheight\bang% \resizebox{!}{!}{\usebox{\mypicboc}}% \else% \resizebox{!}{\thisheight}{\usebox{\mypicboc}}% \fi% \else% \ifx\thisheight\bang% \resizebox{\thiswidth}{!}{\usebox{\mypicboc}}% \else% \resizebox{\thiswidth}{\thisheight}{\usebox{\mypicboc}}% \fi\fi} $
Navigation
MTH-696a
Course outline
Assignments & Solutions
Schedule
Lecture Notes
Sources
Home Page of Leo Butler

Week 7

This week we will look at Lagrangian mechanics.

An example

From Newton to Lagrange

Let a mechanical system have a configuration space $M$, an open subset of $\R^n$. Let the forces acting on the system, $F$, be conservative. Then Newton's equations for this mechanical system are equivalent to \[ \ddt{t}{}\didi{L}{\dot{x}} = \didi{L}{x}, \] where $L$ is the difference of kinetic and potential energy.

Let us suppose, without loss of generality, that $M$ is an open, convex set that contains $0$. Since $F$ is conservative, the work done is path-independent. Define a function \[ V(x) = -\int_0^x \ip{F(c(t))}{\D{c}} = \int_0^1 \ip{F(tx)}{x} \D{t} \] where $c(t) = tx$. The fundamental theorem of calculus shows that the gradient of $V$ at $x$ is $-F(x)$. Define \[ L(x,\dot{x}) = \frac{1}{2} m \norm{\dot{x}}^2 - V(x). \] Then \[ m \ddot{x} = \ddt{t}{} \didi{L}{\dot{x}} \qquad\text{and}\qquad F(x) = - \nabla V(x) = \didi{L}{x}. \]

Example - springs and masses

\begin{align*} F(\mathbf{q}) &= - A \mathbf{q} && V(q) = \int_0^1 \ip{A(t \mathbf{q})}{\mathbf{q}} \D{t} = \frac{1}{2} \ip{A \mathbf{q}}{\mathbf{q}}. \end{align*} \begin{align*} L(\mathbf{q}, \dot{\mathbf{q}}) &= \sum \frac{1}{2} m_i \norm{\dot{\mathbf{q}}_i}^2 - V(\mathbf{q}). \end{align*}

A spring-mass system.
A spring-mass system.

Constrained Systems

Let a mechanical system have a configuration manifold $M \subset \R^n$. We say the system is constrained when $M$ is a closed submanifold with $\dim M \lt n$.

A constrained mechanical system.
A constrained mechanical system.

Acceleration in a Constrained System

Let a mechanical system have a configuration manifold $M \subset \R^n$. A smooth curve $c : I \subset \R \to M$ has the derivative $$\D{{}_t} c = \dot{c}(t)$$ and acceleration $$\covder{t}{\dot{c}(t)} = \Pi_{c(t)}(\ddot{c}(t)),$$ where $\Pi_x : T_x \R^n \to T_x M$ is the orthogonal projection.

Kinetic Energy and Acceleration

Let $(M, g)$ be a Riemannian manifold, $v \in T_x M$. The kinetic energy of $v$ is $$T(x, v) = \frac{1}{2} g_x(v, v) = \frac{1}{2} \norm{v}_x^2.$$

Let $(M, g)$ be a Riemannian manifold, and $c : I \subset \R \to M$ be a $C^2$ curve. We define the acceleration of $c$ to be $$\nabla_{\dot{c}} \dot{c} \equiv \covder{t}{\dot{c}}.$$